

Copernicus Climate Change Service Requirements from water resource management

www.jrc.ec.europa.eu

J .Thielen-del Pozo

A. De Roo, A. Pistocchi,

P. Salamon, J. Vogt

Serving society Stimulating innovation Supporting legislation

Presentation

• A short Introduction to water resources

- Water resource modelling
- Water quality
- Drought monitoring and forecasting
- Flood monitoring and forecasting
- List of requirements

Where are our water resources?

[from I. Shiklomanov (1993) in" World fresh water resources of P. H. Gleick (ed) "Water in crisis: ..."

Water Resources for different sectors

Freshwater hydrological processes

aca aca SAb

6Bbg

Source:

0

Soil

Quality

Groundwater

Alluvium.com.au

Management

Spatio-temporal dimensions

Both atmosphere, surface and soil processes range over large spatial and temporal scales

Land-soil process scales

Research Centre [from www.kgs.ku.edu]

Relevant processes in water resource modelling

- **Meteorological inp**uts (precipitation, temperature, humidity, ...)
- Surface processes (evapotranspiration, interception, infiltration, nutrient flow, ...)
- River flow
 - water quantity (structures, abstraction (irrigation, transfer, ...), ...
 - water quality
- Soil processes (subsurface and flow in soil layers)
- **Ground water** flow (ground water flow and abstraction)

Applications - Modelling

- Water resource modelling
- Water quality modelling
- Flood monitoring and forecasting
- Drought monitoring and forecasting

The LISFLOOD water resources model

LISFLOOD topsoil moisture (WFDEI forcing) 1979-2013

The LISFLOOD water resources model

LISFLOOD discharge (WFDEI forcing) 1979-2013

Time: 1979-01-02 00:00:00

Data Min = 0.0, Max = 188212.0, Mean = 89.2

Evapotranspiration deficit¹ Indicator of rain-fed agriculture water scarcity

Average Monthly Evapotranspiration deficit in vegetated areas

Water Demand versus supply

Average Water Exploitation Index (demand)

Water Dependency (country based)

Maximum Water Dependency Index

Water Quality modelling

Prediction of concentrations (indicative of status of rivers/lakes) and **loads** (critical for lakes/coastal areas) of

- Water quantity
- Nutrients (Nitrogen, phosphorus) causing <u>eutrophication</u>
- Chemicals causing <u>harm</u> to human health and ecosystems
 - Organic chemicals (pharmaceuticals, pesticides, POPs, solvents ...)
 - Metals

Chemical status contributes to the status of water bodies

- in Europe, mandated to be "good" by 2015 under the Water Framework Directive; similar goals under the Marine Strategy Framework Directive

Water Quality modelling

Pistocchi et al., 2012

Jaint Research Centre

Flood forecasting

Research Centre

EFAS forecasting @ Forecasts available from 2009-05-01 to 2015-06-22 (12 UTC) << full screen opacity << 02>> Print screenshol Borr add re 2015-02-22 (12 UTC) search for location. Disclaime zischarge Hydrograph (EUE) 25 + 161 - nex aim. L5-year ALC: N SWAR AND INCOME. VERUE: A second second -sectored to ref 1508 Tou ouse â., -Gasteria Setse Sun L Moe a Rue a Burgos Return Period Hydrograph (FUF) 25 oct - 1 1 1 1 1 35.400 SALEY. A Namaco . • Velobal 1.000 1.1.1 0.000 mate With Sales Rando Hands Tanta Medde Track Mitt 5425 5.e.1 Men 2 Te 5 Meares Castel Cuenci Spain Map data @2015 GeoBasis DE/BKG (@2007), Google, Inst. Geogr. Nacional Terms of Use www.efas.eu

Input

- Precipitation
- Temperature
- Evapotranspiration

Output

- Discharge
- Soil moisture
- Ground water

• ...

Туре

- Real-time data
- Forecast data
- Climatologies (25 yrs ++)

Drought monitoring and forecasting

Welcome to the European Drought Observatory!

The EDO pages centain drought relevant information such as <u>mage</u> of indicators derived from different data sources i precipitation measurements, satellite measurements, modelled soil moisture content). Different tools, like <u>Graphs</u> and <u>Compare Layers</u>, while for displaying and analyzing the information and irregularly publi "Drought News" give an overview of the situation in case of imminent droughts.

Situation of Combined Drought Indicator in Europe - 3rd ten-day period of May 2015

http://edo.jrc.ec.europa.eu

¹Fraction of Absorbed Photosynthetically Active Radiation

INDICATOR

Combined Drought Indicator

Daily Soil Moisture

Daily Soil Moisture Anomaly

Forecasted Soil Moisture Anomaly

SPI at SYNOP stations from the MARS database

SPI at SYNOP stations interpolated to 0.25dd grid

Snowpack Indicator

Spatial average of SPI at SYNOP stations / interpolated SPI for Eurostat NUTS3 regions

Vegetation Productivity (fAPAR)

Vegetation Productivity Anomaly (fAPAR Anomaly)

Vegetation Water Content (NDWI)

Vegetation Water Content (NDWI) Anomaly

Current drought situation in Europe depicted by the latest map of Combined Drought Indicator

> Research Centre

Input

- Precipitation
- Temperature
- Evapotranspiration
- fAPAR¹

Output

- Soil moisture
- Indicators

Туре

- 10 days- monthly
- Forecast data
- Climatologies (> 30 yrs)

Requirements

- What kind of climate-related information products are used in the water sector?
- What observational data are used (or needed) for these products?
- What are the gaps, and what is needed for further development?
- What could/should be the role of Copernicus in this development?

Climate-related information products used in the water sector

- ✓ Meteorological information related to the water cycle
 - Observations of relevant variables (in situ, remote sensing; real timehistoric, subdaily-daily-monthly time steps, m-km resolution)
 - Forecasts (short-medium-monthly-seasonal & local, regional, global)
 - Climate change projections (regional, global)
 - Re-analysis
- ✓ Hydrological information
 - Surface water quantity (in situ, remote sensing, real-time-historic)
 - Water demand (public water needs, irrigation, transfer)
 - Soil moisture (in situ, remote sensing)
 - Vegetation productivity (faPAR)
 - Vegetation water content
- ✓ Water quality information
 - Concentration and loads of nutrients and chemicals

What observational data are used

Variables	Types	Spatial res.	Temporal res.
Rainfall (convective, stratiform)	In situ, RS	Point, gridded (1-25 km)	H, d, <30d
Snow (water equivalent, cover)	In situ, RS	N	H, d, <30d
Evapotranspiration (T, vv, dd, q,)	In situ, RS, modelling	w	H, d, <30d
Soil moisture	RS, in situ	N	d, <30d
Ground water	In situ, modelling	Point, gridded	d, <30d
discharge	In situ	Point	H, d, <30d
Lake/Reservoir level	In situ, RS	Point, gridded (1-25 km)	d, <30d
Water /ground water abstraction	In situ, information	Point	d, <30d

What observational data are used

Variables	Types	Spatial resolutions	Temporal resolutions
Water quantity (see previous)	In situ, remote sensing	m, km, basin scale (outlet)	H, days
Water temperature	In situ, remote sensing	m, m-km,	days
Suspended sediments	Load, concentration	m, km, basin scale (outlet)	days
Chlorophyll	Load, concentration	w	days
Soil organic carbon		w	days
Atmospheric aerosol	Concentration Particle size distribution, load,	M, km	days

Use of data

- 100% of all data are needed for monitoring and model input
- More than half of the data are also used for model validation
 - Meteorological data are not used for validation <u>except</u> evapotranspiration
 - Water abstraction is not used for validation

Requirements

What are the gaps, and what is needed for further development?

- Long-term continuous data sets in digital format (in situ, remote sensing, re-analysis)
- Station density for in situ data very heterogeneous. Reliable/robust remote sensing data and methods for gap filling and blending needed
- Data access
 - Missing data hubs for different data with extraction tools for different applications in OGC standards including easily available remote sensing product time series, e.g. in NetCDF time series or similar
 - License conditions for research and operations

Requirements

What could/should be the role of Copernicus in facilitating/ harmonising/ stimulating this development?

- Negotiate open data access for hydrological and meteorological data with providers for the COPERNICUS services
- Produce long-term consistent in situ data sets in particular for stations with RT data as well as continuous (HR) satellite data sets easily accessible
- Data hub with relevant expertise for extraction/post processing of data for different applications
- Facilitate cross-links between different COPERNICUS services regarding data, e.g. EMS, AMS,

Conclusions - water resource management

- High density real-time data with coherent long-term historic data for hydro-meteorological variables are essential
 - Flow and concentration of nutrients and chemicals are important for water quality modelling
 - Seamless forecasting and climate products are essential for planning
 - Robust methodologies for blending data sets, bias corrections needed
 - A "knowledgeable" data hub with expertise for hydrologists would provide added value

