Super-parametrization in climate and what do we learn from high-resolution

Marat Khairoutdinov

Stony Brook University USA

Stony Brook University

scales-separation

parameterized convection

Cloud Processes

Radiation

Cloud-scale motions

Turbulence

Microphysics

These processes interact strongly on the cloud scale.

NWP Models

Initial conditions problem

total precipitation

Confronted with truth everyday

Climate Models

- Boundary conditions problem
- No truth is known
- The only hope is physical realism (resolve everything!)

Radiative-convective equilibrium (RCE) 301K (Present) 305K (Future) **NET TOA CRM 1Mom-Micro** CRM+2Mom-Micro **CRM+HOC** (param) 100 100 100 dSST dSST $\approx 0.5K/W^{-1}m^2$ dSST $\approx 1 K / W^{-1} m^2$ $\approx 1 K / W^{-1} m^2$ dTOA dTOA dTOA 90 90 90 W/m2 80 80 80 70 70 70 60 60 60 50 50 50 40 40 40 3 12 15 3 6 9 12 15 0 3 6 9 12 15 Grid spacing, km

ERBE

RCE

-40

omega500mb

Tropics

40

120

90

60

30

-120

-80

- Response to SST is not sensitive to microphysics;
- CRM+High-Order-Closure (HOC) SGS parameterization TOA reproduces "Present", but not "Present-minus-Future";
- RCE with HOC has about twice as large equilibrium climate sensitivity (ECS) parameter;
- "Coarse" RCE with 4 km grid spacing appears to be the threshold when the ECS becomes invariant of the resolution
- SGS parameterizations can significantly alter climate sensitivity

Global CRM? Resolve everything!

Great, but too expensive.

Super-parameterization roots from Single-Column Modeling (SCM)

The large-scale forcing data would come from observations (GATE, TOGA, ARM, KWAJEX, etc.)

All super-parameterization does is compute Q_1 and Q_2

Super-parametrization (SP) Multiscale-Modeling Framework (MMF=GCM+SP)

CRM Forcing: $-\overline{\nabla sV} - \frac{\partial \overline{s}\overline{\omega}}{dp} = \frac{\overline{s^*} - \overline{s^n}}{\Delta t}$

MMF is very expensive, but highly scalable on supercomputers

Super-Parameterization - Summary

- Runs like conventional parameterization: profile in, profile out; hence, the name, super-parameterization (term coined by David Randall);
- The CRMs do not communicate directly with each other ('embarrassingly' parallel problem);
- Radiation is usually computed on CRM grid; no cloud-overlap assumptions are needed;
- Momentum tendencies are not generally returned to GCM due to wrong momentum transport by 2D CRM; however use of 3D CRM is possible;
- Surface fluxes are still computed on GCM grid;
- Tendencies due to terrain are also due to GCM (no topography in CRM);
- PBL parameterization is generally off for scalars, but not wind;
- The width of the CRM domain is not tied to the GCM grid size (same way as a convective parameterization using no Δx information);
- GCM grid-cell should be large enough to contain large-scale convective systems.

The super-parameterization improves variability on a wide range of time scales.

- Diurnal cycle
- Extreme Precipitation
- MJO
- African Easterly Waves
- Monsoon/BSISO
- ENSO

...

http://www.cmmap.org/research/pubs-mmf.html

Diurnal cycle of precipitation JJA Local Time of Precipitation Frequency Maximum

Diurnal cycle of precipitation

JJA Local Time of Precipitation Frequency Maximum

SP-CAM T85 (1.4x1.4°)

We still don't understand why 4-km 2D CRM can do such a good job...

Eastward propagation of MCSs over US

Eastward propagation is robust in SP-CAM even at T42! Only large-scale processes are responsible for propagation of MCSs.

Precipitation over US

SP-CAM is better than CAM to simulate the extreme precipitation

Li, Rosa, Collins & Wehner, 2012

PDF of Rainfall SP-CAM vs CAM T85

SP-CAM does better job than CAM in simulating heavy rain rates

Zhou and Khairoutdinov 2015

Change of today's extreme (99th) precipitation event frequency in RCP8.5 climate

SP-CAM predicts much bigger increase in extreme precipitation frequency than CAM

Zhou and Khairoutdinov 2015

Madden-Juljan Oscillation (MJO)

Осцилляция Маддена-Джулиана

MJO in SP-CAM T2I

Randall, Khairoutdinov, Arakawa, Grabowski 2003

From the inception, SP-CAM/SP-CCSM has been arguably the best framework for MJO simulation

Intraseasonal Variability in Tropics

Pritchard 2012

Inraseasonal Variability in Tropics

Coupled SP-CCSM

Coupling to the ocean improves subseasonal variability

Zonal cross-section of MJO

Benedict and Randall 2008

Large increase of MJO in warmer climate

Arnold et al, PNAS 2014

Self-aggregation of convection on sphere SST=const, Solar=const, f=0

Uniform longwave heating

Uniform surface fluxes

Aggregation does not occur without interactive longwave!

Surface fluxes help, but are not essential.

Arnold and Randall (2015)

Restoring full rotation: Model produces an "MJO"

See also: Grabowski (2003/04) Arnold and Randall (2015)

Tropospheric moisture in Tropics binned by rainfall rate

In Obs and SP-CAM, heavy rainfall corresponds to regions with high humidity, especially in low-to-mid troposphere.

Is high sensitivity of precipitation to humidity the key for simulating MJO?

Thayer-Calder and Randall (2009)

African Easterly Waves

FIG. 2. Average JJAS signal-to-noise space-time spectra averaged between 15°S and 15°N at all longitudes for disturbances that are (a)-(c) symmetric and (d)-(f) antisymmetric about the equator from (left) observations, (middle) SP-CCSM, and (right) CCSM.

SP-CCSM @ T42

McCary, Randall, Stan 2014

African Easterly Waves

OLR anomalies and 850 mb streamfunction and winds

SP-CCSM couples convection and waves right to simulate AEWs even at T42! Again, as in MJO, mid-tropospheric moisture anomaly appears to be the key to simulating AEWs.

McCary, Randall, Stan 2014

ENSO

El Nino amplitude and periodicity is better simulated by SP-CCSM

Super-parameterized GCMs

- 2001: SP-CAM
- 2007: SP-fvGCM: NASA GSFC (Wei-Kuo Tao)
- 2010: SP-WRF: (Stefan Tulich)
- 2011: SP-CFS: Indian Institute of Tropical Meteorology
- 2014: SP-IFS: ECMWF

SP-CFS (IITM)

CFS

Goswami et al, JC (2015)

SP-IFS - Super-parameterized IFS

Thanks to

- Anton Beljaars Peter Bechtold Filip Vana Glenn Carver
- First implemented in OpenIFS, which is a free running IFS (cycle 38RI), but without data assimilation system;
- Summer 2014: T159 (~1.125° x 1.125°) 3-year runs with SP-OIFS;
- Fall 2014: SP is implemented in IFS CY40R3.
 - Fall 2014: SP is in IFS Single-Column Model CY40RI;
- Currently, implemented in CY4IR3 and can be run using prepIFS system.

Preliminary results using T159 SP-OpenIFS

- SP: 32 x 74; Δx=4 km; Δt=20s;
- All IFS cloud and convective parameterizations are off;
 - **PBL/mixing parameterizations are allowed;**
- Radiation coupling through SP's mean profiles (not on CRM grid as done in SP-CAM);
- Free continuous climate run for 3 years starting Aug 2000.

JJA Precipitation TI59

SP-OIFS

GPCP (OBS)

Mean climatology of SP-IFS doesn't look bad for a model which hasn't been properly tuned.

OIFS

Frequency Spectrum (Subseasonal): Precipitation in Tropics (15°S-15°N) Symmetric

Frequency Spectrum (S/N): Precipitation in Tropics (15°S-15°N)

Variance: 20-100 day filtered precipitation

Variance: 20-100 day filtered U850

Summer (May-Oct)

Winter (Nov-Apr)

MJO eastward propagation

Lag correlation (U850, Winter)

ERA40

Reference domain: 1.25S-16.25N, 68E-96E

* US CLIVAR MJO Diagnostic metrics

SP-IFS

-0.8-0.7-0.6-0.5-0.4-0.3-0.2-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Summer ISO northward propagation

Tuning for cloud fraction using SCM IFS (TWP ICE case)

Bias in OLR in SP-IFS CY40R1 forecast SP-IFS (before tuning)

Bias in OLR in SP-IFS CY40R1 forecast SP-IFS (after tuning)

IFS

What have we learnt from SP?

- Even small-domain 2D CRM works better than current convective parameterizations to represent variability of climate system on various timescales.
- We know much more about MJO now thanks to the SP.
- As the SP interacts with a GCM as an ordinary parameterization (ID profile in, ID profile out), it is in principle possible to develop a parameterization that works as well as the SP.

Lots of MMF publications:

http://www.cmmap.org/research/pubs-mmf.html