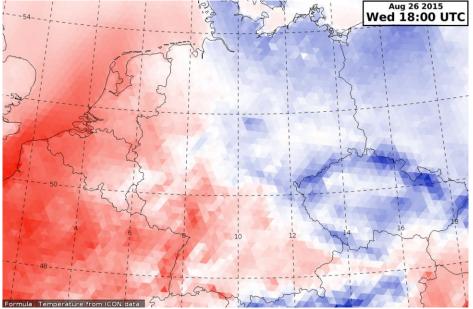


Significant increases in model data volumes

and other challenges

for a meteorological visualisation platform

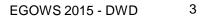


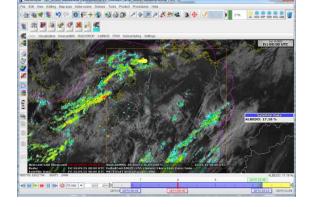
Visualisation in Meteorology Week 1st Oct 2015, Marcus Werner, DWD

Overview

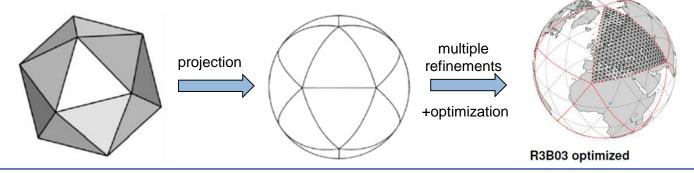
- NinJo at DWD
- Operational data volumes
- New model chain
- Distributed environment
- Generic unstructured grids
 - → WMS experiment ICON
 - ➔ Formula layer prototype
- Control volume growth
- Opening opportunities?
- Other meteorological data types

Bruno Zürcher, MeteoSwiss


DWD's meteorological workstation - NinJo


→ NinJo is developed by an international Consortium

- Primary tool for our forecasters
- Short range forecast of DWD is based on
 - → ICON Global, COSMO-EU, COSMO-DE, COSMO-DE EPS
 - → In-house MOS systems
- ECMWF IFS, Euro4, GFS and other models are also available
- \rightarrow NWP counts for >50% cached data, followed by radar >30%


ICON Global & ICON-EU Nest

- ICON joint development with Max-Planck-Institute for Meteorology
- → ICON Global replaced GME (early 2015)
- ➔ ICON-EU Nest operational calculated
 - → COSMO-EU is to be retired

Florian Prill, DWD

- → ICON 2-way nesting ensures consistency of global and regional run
- ➔ ICON is based on a generic unstructured grid
 - → Optimized from a NWP calculation point of view

NWP volumes and new properties

- \rightarrow Users request high resolution NWP data (on all scales)
- → NWP model updates provide 4x (horizontal)
- Vertical resolution, time resolution and forecast length increases

 \rightarrow # of meteorological fields + field sizes

NWP and NowCasting is going to merge (seamless prediction)

 \rightarrow ... acceleration ... ?

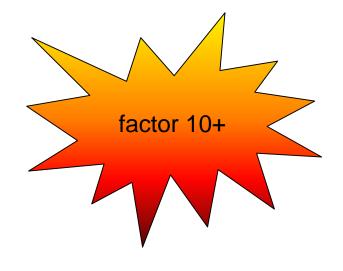
Unstructured generic grid (complexity++)

→ GRIBs do not contain all necessary information anymore

- \rightarrow Take advantage from consistency on different scales (glob./reg.)
 - → GUI navigation + new visualisation algorithms

Some volume numbers around ICON

- → Global ICON (R03B07)
 - → ~3 mill. triangles, 4.5 mill. edges, ~13km
 - → 90 vertical levels, +180h
 - → Geometry file 1.8 GB netcdf + GRIB2 fields for model heights ~300 MB
 - → Algorithmic grid generators do not work
- → ICON EU-Nest (R03B08)
 - → ~700k triangles, 1 mill. edges, ~6.5 km
 - → 60 vertical levels, +120h
 - → Geometry 400 MB netcdf
- → Hence → dual output (native & regular)
 - → Global ICON: regular lat/lon 0.25° grid (next step 0.125°)
 - → ICON-EU Nest: regular lat/lon 0.0625° grid
 - → Central and regional packages

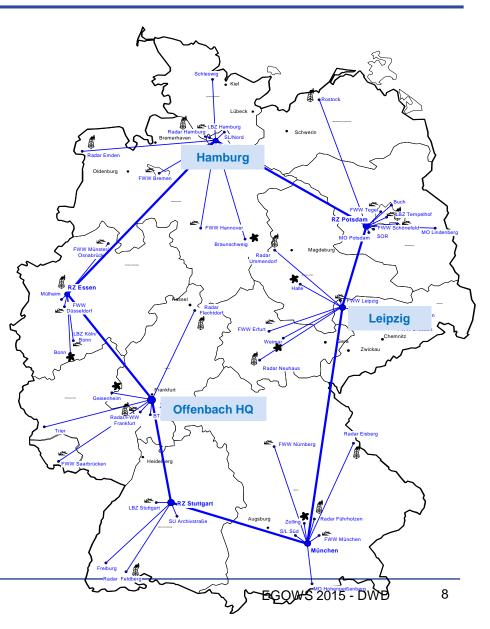


DWD NinJo - operational server cache sizes

- → Hold time = $36h \rightarrow ICON$ (last 6 model runs)
- ➔ Today ("measured")
 - → ICON Global 0.25°: 100 GB (~"old" GME data set)
 - → COSMO-EU: 170 GB
- Incremental migration (extrapolated volumes)
 - ➔ ICON Global
 - → New operational data set (0.25° grid)
 - →~1 TB
 - → New operational data set (0.125° grid)

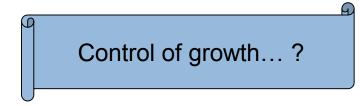
→~4 TB

- → Maximum extension up to ~7 TB
- → ICON-EU Nest (0.0625° grid)
 - → New operational data set ~1.5 TB



NinJo deployment at DWD

- ➔ 3 central NinJo sites
 - → Full operational data set
 - → Backup each other
- Regional installations
 - Reduced data set
 - Regional clients can access full central data set
- Server and storage systems are up-to-date (16 TB ssd)
- ➔ HW is ready for new volumes
- Improved failover capabilities
- → We are prepared for the moment....



... planners, developers and budget responsibles face...

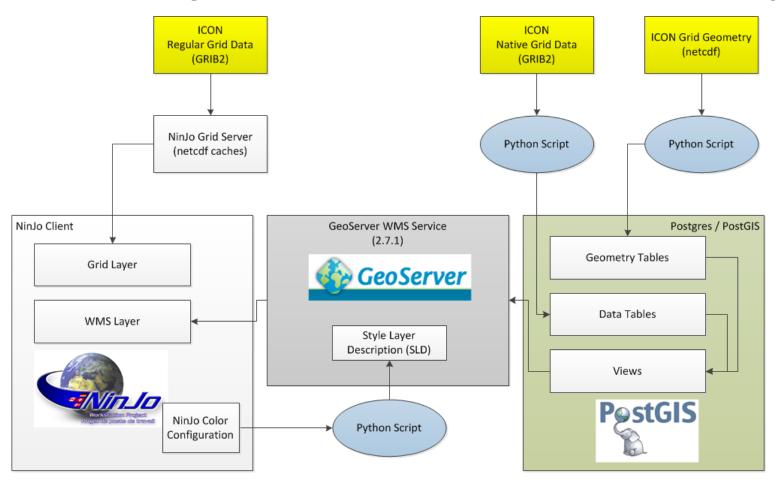
- → Volumes seem to grow faster as hardware is replaced by renewal cycle
- Increasing NWP amounts effecting whole operational data chain (NWP DMO is processed and stored multiple times)
- ➔ Growing data volumes result in challenges for applications and libraries
 - \rightarrow Performance issues, technical limits \rightarrow maintenance, test, cost ++
- ➔ Regional offices and backup/failover requires powerful WAN
- ➔ It is not easy to classify fields and get numbers for
 - Critical and heavy used data
 - → Has to be there in case of need

➔ DWD forecasters agreed new operational ICON data set

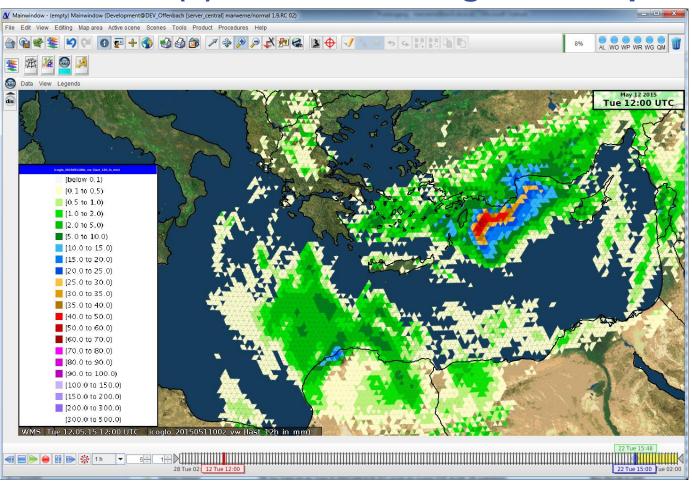
... important step in the right direction ...

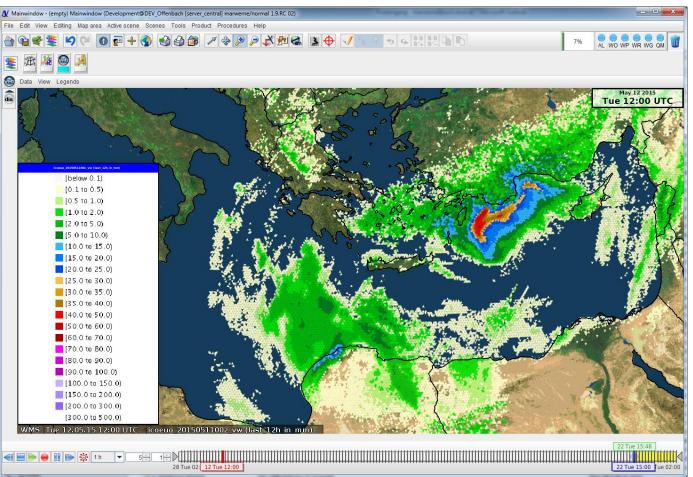
Recent discussions at DWD...

- Surface data, boundary layer & low heights are required in high resolution
- Top most layers are not required for operational usage (cap at ~20km) \rightarrow
- → How much operational benefit provide high resolution data of the regional model for the free atmosphere in compare to the hi-res global model?
- Smooth fields vs. complex inherent structure
- → What other options exist?
 - → Well known: Precision and coding of numbers
 - \rightarrow Well known: Compression $\leftarrow \rightarrow$ run times
 - \rightarrow Can we use problem specific resolutions and data? (\rightarrow general grids)
 - \rightarrow Technical: What is the best data format for our data caches, taking modern parallel CPUs, memory and storage systems into account?

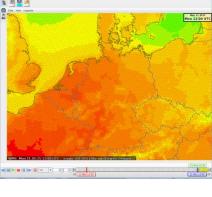

Visualisation of generic grids (start point)

- ➔ Operational performance: max. 2 sec screen update
- → Functional limit: NinJo Grid Layer cannot display generic grids
 - → Internal data structures require extensions
 - Meteograms, cross-sections and model soundings need to work with generic grid data
- ➔ Use forward mapping or backward mapping?
 - \rightarrow Forward: data values & geometry \rightarrow pixels on the screen (requires cutting)
 - → Backward: screen pixel → lat/lon → data values (requires "expensive" searches)
- → Can we get a first display with low efforts?


An ICON data experiment with GeoServer and NinJo (I)


... experiment ... (II) – Global 13km grid – 12h precip.

... experiment ... (III) – Regional 6.5km grid – 12h precip.

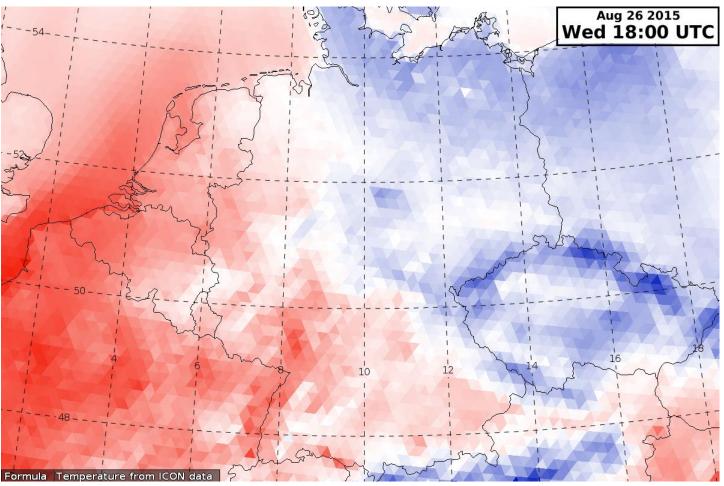

An ICON data experiment with GeoServer and NinJo (IV)

- → GeoServer 2.7.1 WMS and NinJo WMS Layer will display native ICON data
- ➔ Acceptable display times, require usage of tile cache
- → 1 model run, 1 meteorological element (T2M) on surface level, 1 forecast step
 → 1 data field

1 visualisation method (single SLD per met.-element), restricted to zoom level 0-8, 1 projection EPSG:4326:

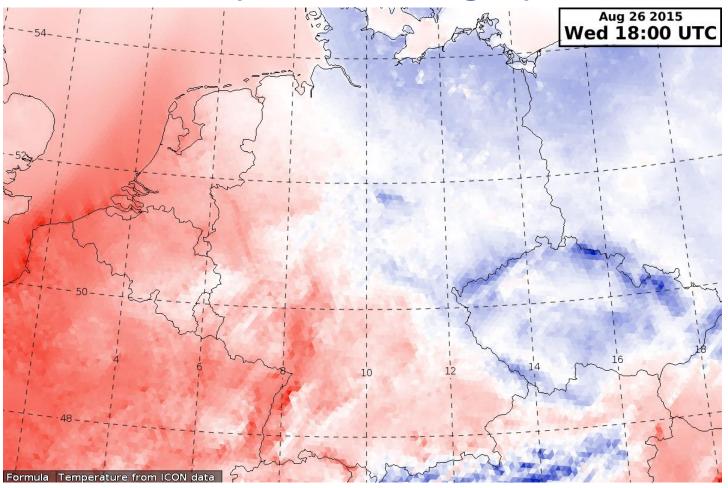
- → ICON Global: ~25 MB tile cache size (png8)
- → ICON-EU Nest: ~40 MB tile cache size (png8)
- → New operational ICON data set:
 - → ICON Global: ~45.000 fields per model run (→ ~1,2 TB)
 - → ICON-EU Nest: ~68.000 fields per model run (\rightarrow ~2,7 TB)

A native grid display prototype - NinJo formula layer


- → Open development task to directly display native ICON data
- → Can we get operational display performance for generic grid data?
- ➔ A generic display should help NWP developers and NWP model evaluators in this use case: visualisation performance is less critical
- Recently we got new prototype based on the NinJo formula layer First results look promising: display times of ~5-20 sec
- We are confident that parallel executions and pre-calculation (search tree) can improve timings
- Another result: Display of global grid and regional grid require different search algorithms and dedicated optimisations (<-> backward mapping case)

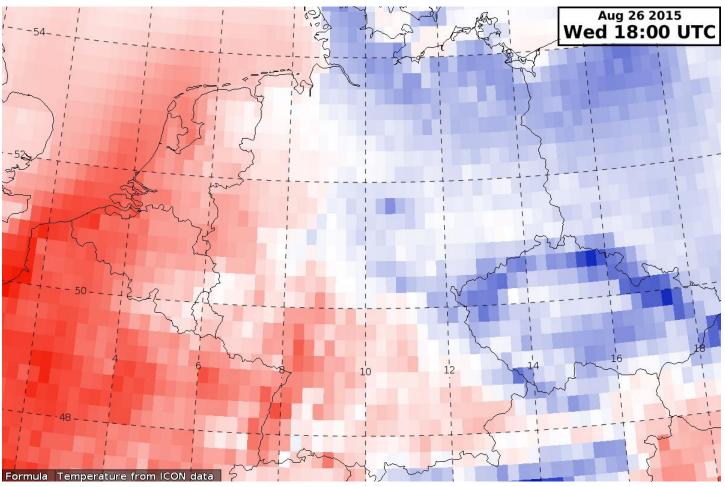
Deutscher Wetterdienst Wetter und Klima aus einer Hand

T2M: ICON Global (native 13km grid)

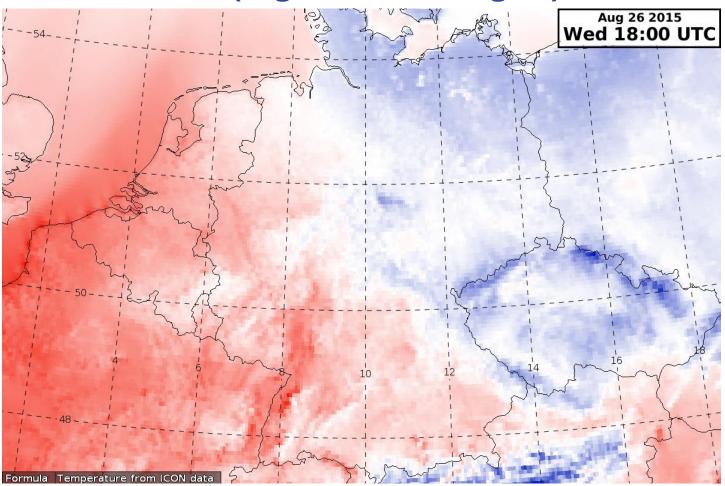


Deutscher Wetterdienst Wetter und Klima aus einer Hand

T2M: ICON-EU Nest (native 6.5 km grid)



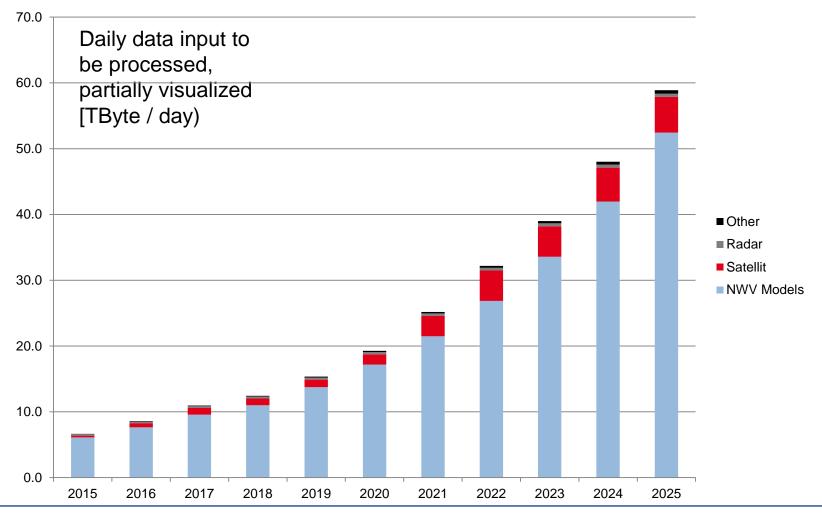
Deutscher Wetterdienst Wetter und Klima aus einer Hand


T2M: ICON Global (regular 0.25° grid)

T2M: ICON-EU Nest (regular 0.0625° grid)

Available NWP data vs. operationally visualised data

- → NWP models have to use: fine grids, high precision data types and use max. available resources on the super computer
- ➔ Operational visualized NWP data should not always take 1:1 NWP output


→ Forecast quality decreases by time

- \rightarrow Available precision can pretend false truth (signal location & strength)
- → Short term FC +1h use same data representation as long term FC +180h
- → Forecasters anyway do not trust a deterministic "single pixels" in time
- → Increased use "Ensemble Prediction Systems" data
- Still deterministic high resolution NWP data uses significant amount of resources of our operational visualisation systems and processing chains
- Generic grids need to be supported by visualisation systems.
 Is here a hidden opportunity to reduce data volumes?

Expected increase of input data (NinJo & other applications)

Further estimates & rumours on volume increases

- → Satellite data (MTG) → ~100x
- → Radar data (volume scans, HR CAPPIs, 250m composites) → \sim 6x
- → Strategic planning already includes next NWP refinement steps \rightarrow ~6x
- → NowCast data & seamless prediction (IVS) → unknown !!!
- → Ensemble products → usage of some single ensemble members (~20-40x)
- \rightarrow DWD's central archive \rightarrow Petabytes (needs dynamic load)
- → Climate models → unknown !!!

Contact:

Marcus Werner Referat FE ZE Frankfurter Str. 135 63037 Offenbach

E-Mail: marcus.werner@dwd.de Tel.: +49 (0) 69 / 8062 - 2076

