

The new NWP forecast system of the DWD based on ICON / ICON-EU and COSMO-DE

15th Workshop on Meteorological Operational Systems ECMWF 28-30th September 2015

Thomas Hanisch
GB Forschung und Entwicklung (FE)
Deutscher Wetterdienst, Offenbach, Germany
Thomas.Hanisch@dwd.de

Overview

Changes of the operational environment

Compute server NWP models

Overview about DWD forecast system

ICON / ICON-EU COSMO-DE-EPS "Modell-Uhr"

Actual NWP development at DWD

ICON-EDA
ICON-Ensemble forecast
COSMO-CD2 + EPS
KENDA
ICON-ART
System Issues

Main changes of the operational environment

Compute-Server

• NEC SX-9 → Cray XC40 27/05/2014

+ login nodes: Megware Linux cluster

+ compute nodes: mixed system – Ivy Bridge (20 cores) / Haswell (24 cores)

Data handling / Data format

CSOBANK → SKY spring 2014

+ with archive access

• GRIB1 → GRIB2 24/06/2014

NWP-Model-Suite

• GME + COSMO-EU + COSMO-DE (-EPS) → ICON + ICON-EU + COSMO-DE (-EPS)

+ ICON operational: 20/01/2015 + ICON-EU operational: 21/07/2015 + GME: switched off

+ COSMO-EU: still running operational, but frozen

provides boundary data of COSMO-DE

postprocessing

DMRZ (Offenbach) - Computing Centre

Computing hall WEST

Archive system Oracle/IBM-HPSS

Oracle STK SL8500 2 tape silos 20000 storing positions 18 PiB 60 tape drives

IBM X3650 9 nodes 72 cores 216 GiB main memory 480 TiB disk storage

Data server production

5 * SUN x2-4/x2-8 320 cores 4096 GiB main memory 1656 TiB SAN disk storage

Computing hall **EAST**

10 GBit

Main changes of the operational environment

Compute-Server

• NEC SX-9 → Cray XC40 27/05/2014

+ login nodes: Megware Linux cluster

+ compute nodes: mixed system – Ivy Bridge (20 cores) / Haswell (24 cores)

Data handling / Data format

CSOBANK → SKY spring 2014

+ with archive access

• GRIB1 → GRIB2 24/06/2014

NWP-Model-Suite

• GME + COSMO-EU + COSMO-DE (-EPS) → ICON + ICON-EU + COSMO-DE (-EPS)

+ ICON operational: 20/01/2015 + ICON-EU operational: 21/07/2015 + GME: switched off

+ COSMO-EU: still running operational, but frozen

provides boundary data of COSMO-DE

postprocessing

GME → ICON

operational setup

non-hydrostatic	equation system	hydrostatic
Hybrid (SLEVE, z-based)	vertical grid	Hybrid (p-based)
13 km	resolution	20 km
75 km / 90	model top / levels	36 km / 60
2.9 Mio.	grid points/level	1.5 Mio.
3D Var	assimilation system	3D Var
Hybrid MPI-OpenMP	parallelization	Flat MPI

Little migration efforts for most GME users

Same output fields as GME with same resolution (0.25° lat/lon) + triangular

NWP models at DWD

Global-Model ICON

Operational since 20/01/2015

Mesh size: 13 km

Vertical levels: 90

Forecast range: 180h / 120h / 30h

00, 03, 06, 09, 12, 15, 18, 21 UTC

Grid area: 173 km²

ICON-EU nest area **Europa**

Operational since 21/07/2015

Mesh size: 6.5 km

Vertical levels: 60

Forecast range: 120h / 30h

00, 03, 06, 09, 12, 15, 18, 21 UTC

Grid area: 43 km²

COSMO-DE (-EPS)

Operational since 2006 (EPS 2010)

Mesh size: 2.8 km

Vertical levels: 50

Forecast range: 27h / 45h

00, 03, 06, 09, 12, 15, 18, 21 UTC

Grid area: 8 km²

ICON

ICOsahedral **N**onhydrostatic Model

- Joint development of DWD and MPI-M (Hamburg) for NWP and climate modelling
- 2012, **KIT** (Karlsruhe) joined to implement the chemistry module ART (Aerosols and Reactive Trace Gases).
- About 40 active developers from atmospheric and computational sciences
- ~ 600000 lines of Fortran code

Primary development goals

- Unified modeling system for NWP and climate prediction in order to bundle knowledge and to maximize synergy effects
- Better conservation properties
- Flexible grid nesting in order to replace both GME (global, 20 km) and COSMO-EU (regional, 7 km) in the operational suite of DWD
- Nonhydrostatic dynamical core for capability of seamless prediction
- Scalability and efficiency on O(10⁴⁺) cores

ICON

Icosahedral grid similar to GME, but unstructured

ICON-EU

Structure of grid nesting

Effective grid spacing (distance between points):

 $\Delta x \approx 5050 \; \text{/} \; (\; \text{n} \; 2^{\text{k}}) \; \text{[km]})$

Example:

 $R_{3}B_{7}$: n = 3, k = 7

Grid spacing: 13 km

Global grid consists of 2.9 million spherical triangles.

Regional domain with higher horizontal resolution.

Grid spacing: 6.5km

ICON-EU

ICON-Orography for Europe

Grid spacing: 6.5 km

R3B08

Primary development goals

- Unified modeling system for NWP and climate prediction in order to bundle knowledge and to maximize synergy effects
- Better conservation properties
- Flexible grid nesting in order to replace both GME (global, 20 km) and COSMO-EU (regional, 7 km) in the operational suite of DWD
- Nonhydrostatic dynamical core for capability of seamless prediction
- Scalability and efficiency on O(10⁴⁺) cores

ICON

Scaling of ICON 13 km, L90 on Cray XC40 at DWD

Real time (s) for 24-h forecast (di.e. 3600 time steps)

2.9 million grid points / layer; 90 layers

At 7200 MPI-tasks: 400 grid points / task

For operations we need:
24-h forecast in 500 s;
i.e. we need about
2000 tasks (cores) on
Cray XC40 (Haswell).

Scaling of ICON (5 km grid spacing) on Cray XC30 at ECMWF (Reading)

COSMO-DE + COSMO-DE-EPS

Ensemble forecast system COSMO-DE-EPS with 20 members

 $\Delta x = 2.8 \text{ km}$

8 times a day

Forecast time: 27h, 03 UTC - 45h

Available: 2 h after observation time

"Modell-Uhr"

Operational Schedule

	type	time [UTC] / interval	forecast time [h]	cut off time X + ??	ready time X + ??
ICON / ICON-EU	main forecast	00, 12 06, 18 03, 09, 15, 21	180 120 30	+ 2:14 + 2:15 + 2:14	+ 3:30 + 3:00 + 2:45
	pre-assimilation	3 hourly	3	+ 4:40	+ 5:05
	assimilation	00, 12 03, 15 06, 18 09, 21	3 3 3 3	+ 11:10 + 8:35 + 6:00 + 4:35	+ 11:35 + 9:00 + 6:25 + 5:00
COSMO-EU	main forecast	00, 12 06, 18 03, 09, 15, 21	78 78 30	+ 2:30 + 2:30 + 2:30	+ 3:05 + 3:05 + 2:45
	assimilation	00, 03, 06, 12, 15, 18 09, 21	3 (cont.)	+ 5:10 (8:10) + 4:50 (7:50)	+ 5:20 + 5:00
COSMO-DE	main forecast	3 hourly	27	+ 0:40	+ 0:55
	assimilation	3 hourly	3 (cont.)	+ 2:103:20 (5:106:20)	+ 2:203:30
COSMO-DE-EPS	main forecast	3 hourly	27	+ 0:55	+ 1:35

New developements 2015 / 2016

ICON

- Tile approach for TERRA

Global Ensemble Data Assimilation (ICON-EDA)

- 13 (6.5) km + 40 (20) km
- pre-operational since 09/09/2015

COSMO-D2

- 2.2 km, 651x716 grid points, 65 vertical levels

Regional Ensemble Data Assimilation COSMO-D2 (KENDA)

- 2.2km
- Data Assimilation Technique: 4d-LETKF, 40 members

COSMO-D2-EPS

- 2.2km
- 40 members

ICON-Art

- Volcanic ash forecast
- Dispersion of (Saharan) mineral dust

ICON-EDA

Pre-operational since 09/09/2015

- 13 km Deterministic Variational Data Assimilation (3 hourly cycling) with
 6.5 km Nest over Europe
 - Initial data for long term forecasts
 - Observation quality control for the LETKF
 - En-Var: Uses flow dependent background from LETKF
- 40 Member 40 km 3 hourly LETKF Data Assimilation Cycle with 20 km Nest over Europe
 - Inital data for ICON EPS
- 40 Member 40 km EPS with 20 km Nest over Europe
 - Additional value of the probabilistic forecast
 - Boundary conditions for the COSMO-DE LETKF
 - Boundary conditions for the COSMO-DE EPS

ICON-EDA (pre-operational since 09. September 2015)

Specifications of LETKF and En-Var

Localisation

 I_h 300 km horizontal localisation scale. I_s 0.3 vertical localisation scale at surface (1000 hPa)

vertical localisation scale at model top (1.5 Pa)

Multiplicative Model Error

 $ho_{\!\!_{
m max}}$ 3.0 upper bound for adaptive covariance ination

estimated from Desroziers statistics

rttp 0.75 factor for relaxation to prior perturbation

Additive Model Error

a_b 0.25 amplitude of model error proxy (3D-Var B)

a_{set} 1K amplitude for SST perturbations.

 I_{sst} 100,1000km correlation scale for SST perturbations.

En-Var

8 0.5 weight of Ensemble B matrix

New developements 2015 / 2016

ICON

Tile approach for TERRA

Global Ensemble Data Assimilation (ICON-EDA)

- 13 (6.5) km + 40 (20) km
- pre-operational since 09. September 2015

COSMO-D2

- 2.2 km, 651x716 grid points, 65 vertical levels

Regional Ensemble Data Assimilation COSMO-D2 (KENDA)

- 2.2km
- Data Assimilation Technique: 4d-LETKF, 40 members

COSMO-D2-EPS

- 2.2km
- 40 members

ICON-Art

- Volcanic ash forecast
- Dispersion of (Saharan) mineral dust

COSMO-D2

Actual: COSMO-DE

Future: COSMO-D2

421 x 461 x 50, 2.8 km (10.5° * 11.5°)

651 x 716 x 65, 2.2 km (13° * 14.3°)

New developements 2015 / 2016

ICON

Tile approach for TERRA

Global Ensemble Data Assimilation (ICON-EDA)

- 13 (6.5) km + 40 (20) km
- pre-operational since 09. September 2015

COSMO-D2

- 2.2 km, 651x716 grid points, 65 vertical levels

Regional Ensemble Data Assimilation COSMO-D2 (KENDA)

- 2.2km
- Data Assimilation Technique: 4d-LETKF, 40 members

COSMO-D2-EPS

- 2.2km
- 40 members

ICON-Art

- Volcanic ash forecast
- Dispersion of (Saharan) mineral dust

KENDA

Data Assimilation Technique: 4d-LETKF, 40 members

New developements 2015 / 2016

ICON

- Tile approach for TERRA

Global Ensemble Data Assimilation (ICON-EDA)

- 13 (6.5) km + 40 (20) km
- pre-operational since 09. September 2015

COSMO-D2

- 2.2 km, 651x716 grid points, 65 vertical levels

Regional Ensemble Data Assimilation COSMO-D2 (KENDA)

- 2.2km
- Data Assimilation Technique: 4d-LETKF, 40 members

COSMO-D2-EPS

- 2.2km
- 40 members

ICON-Art

- Volcanic ash forecast
- Dispersion of (Saharan) mineral dust

ICON-ART

"On-Demand" forecast of volcanic ash dispersion for the European airspace (Q4 2016 / Q1 2017)

Global forecasts of volcanic ash dispersion as a new component of the operational NWP system of DWD (planned for 2019)

PerduS: "Photovoltaikertragsreduktion durch Saharastaub" (2016-2019) (Reduction of PV power generation due to Saharan mineral dust)

ICAO MET Panel WG-MISD (Group 1 / RRM)

"Release of Radioactive Material" – Coordinator: Dirk Engelbart (BMVI)

Use ICON-ART as model in addition to LPDM, coordinate work with BfS

ICON-ART in limited area mode as replacement for HEARTS

Some System Issues

Data handling (example: ICON)

 Increase of the produced data and operational I/O bandwidth to the database [one forecast]

- GME	300 GB	86 MB/s
- ICON	900 GB	256 MB/s
- ICON + ICON-EU	1,1 TB	320 MB/s
- ICON + ICON-EU + ICON-EDA with EU-nest	1,9 TB	550 MB/s

- Amount of data per day: operational and (pre-)operational ICON system
 - 23 TB
- Archive system
 - handle data from

Operational NWP runs

Pre-Operational NWP runs

Experiments

Job control (example: data assimilation run)

- Runtime of a data assimilation forecast run (vv=3h)
- Batch-System has to start 40+1 forecast runs immediately
 - runtime must not change

Operational Job Control

Operational Job Control - EPS

