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CLIMATE PREDICTABILITY

Abstract

It has recently been argued that single-model seasonal forecast ensembles are overdispersive, im-

plying that the real world is more predictable than indicated by estimates of so-called perfect-model

predictability, particularly over the North Atlantic. However, such estimates are based on relatively

short forecast datasets comprising just 20 years of seasonal predictions. Here we study longer 40-

year seasonal forecast datasets from multi-model seasonal forecast ensemble projects and show that

sampling uncertainty due to the length of the hindcast periods is large. The skill of forecasting the

North Atlantic Oscillation during winter varies within the 40-year datasets with high levels of skill

found for some sub-periods. It is demonstrated that whilst 20-year estimates of seasonal reliability

can show evidence of overdispersive behaviour, the 40-year estimates are more stable and show no

evidence of overdispersion. Instead, the predominant feature on these longer timescales is underdis-

persion, particularly in the tropics.

1 Introduction

There is no question that skilful seasonal forecasts can be made in the tropics (e.g. Barnston et al.

(2012)). However, the extent to which seasonal forecasts have useful information in the extratropics is

more controversial. For example, whilst on the one hand Scaife et al. (2014) recently showed that the

new UK Met Office seasonal forecast model GloSea5 was able to skilfully predict the wintertime North

Atlantic Oscillation (NAO) index for the period 1993-2012, on the other hand, Weisheimer and Palmer

(2014) demonstrated that seasonal predictions of temperature and precipitation were not reliable for sev-

eral regions in the extratropics, in particular over Europe.

Using the dataset of skilful NAO forecasts in GloSea5, Eade et al. (2014) suggested that seasonal fore-

cast ensembles created with initial condition uncertainty were underconfident, or overdispersive, with

too much noise in each ensemble. These would lead to an unreasonably pessimistic estimate of seasonal

predictability because the potential skill would be underestimated implying that the real world would be

more predictable than the model world.

One of the difficulties with seasonal prediction research is that the sample size from which estimates

of forecast skill can be obtained is necessarily small: for start dates at a given time of year, the sample

size of seasonal forecasts for boreal winter from the 20-year period 1992–2011, as used in Eade et al.

(2014) is just 20. For example, one would hardly implement changes to a numerical weather forecast

model based on a sample of just 20 forecasts. Indications that 20 may be too small a number for robust

estimates of skill can be found in studies, e.g. by Müller et al. (2005) who showed that robust results

for the seasonal forecast skill of the NAO index were not stable with a sample size of 20, and by Kumar

(2009) demonstrating the effect on skill measures of small verification time series due to sampling error.

In this paper we assess the Eade et al. (2014) claim that model estimates of extratropical predictability

in the North Atlantic region is unduly pessimistic. We analyse a consistent set of seasonal forecast en-

sembles from a total of 8 individual models over various subset of the 42-year period 1961–2001. It is

found that several of these models have NAO hindcast skill levels comparable to GloSea5. We then com-

pute the ‘Ratio of Predictable Components’ (RPC) diagnostic of Eade et al. (2014) to show that whilst

individual model ensembles can appear overdispersive over 20-year periods, they are not overdispersive

over 40-year periods.
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We conclude that the claims made in Eade et al. (2014) are consistent with sampling uncertainty due

to the limited length of the hindcast period. However, on 40-year timescales, evidence suggests that

single model ensembles are profoundly underdispersive. This suggests that it remains crucially important

to develop reliable methods to represent parametrisation uncertainty (Palmer (2012), Weisheimer et al.

(2014)).

2 Methodology

We use seasonal hindcast simulations over a 42-year period performed with 8 individual model en-

sembles as part of in the European Union projects DEMETER (Palmer et al. (2004)) and ENSEMBLES

(Weisheimer et al. (2009)) to revisit the findings of Eade et al. (2014) and to asses the predictability of

the NAO. As is well known (Hurrell et al. (2001)), the NAO is a mode of atmospheric variability over the

North Atlantic region with wide-ranging impacts on the weather and climate over Europe. In this paper,

a simple index of the NAO is defined following Pavan and Doblas-Reyes (2000) and Doblas-Reyes et al.

(2003), taking the model projections of the forecast anomalies of geopotential height at 500hPa (Z500)

on the leading climatological Empirical Orthogonal Function. In addition, we also computed an NAO in-

dex based on the normalised mean sea level pressure (MSLP) difference between the Azores and Iceland.

The following models were used in our analysis: D ECMF (ECMWF), D UKMO (MetOffice), D MEFR

(MétéoFrance) from the DEMETER system and E ECMF (ECMWF), E UKMO (MetOffice), E KIEL

(IfM Kiel), E INGV (INGV Bologna), E MEFR (MétéoFrance) from the ENSEMBLES system. The in-

dividual model ensembles consist of 9 members that were created through perturbed initial conditions.

For the analysis we consider seasonal mean forecast anomalies for December to February (DJF) from

forecasts started on 1st November each year. The verification data were obtained from the ERA40 Re-

analysis Project (Uppala et al. (2005)).

Following Eade et al. (2014), ensemble-based estimates of predictability can be obtained from a diag-

nostic known as the ‘Ratio of Predictable Components’ (RPC) between the observed and model predicted

values defined as

RPC =

PCobs

PCmod

,

where PC is the predictable component in observations and in model hindcasts. In Eade et al. (2014),

this is approximated by

RPC ≥
r

√

σ
2
sig/σ

2
tot

where PCobs is estimated directly from the explained variance given by the square of the correlation coef-

ficient r between the ensemble mean model forecasts and the observations. The authors used the variance

of the ensemble mean (σ2
sig) relative to the average variance of individual ensemble members (σ2

tot) to

estimate PCmod . For a perfect forecast system, the RPC should be close to 1. RPC values greater than one

imply that the model is unduly pessimistic in its estimate of skill, by being overdispersive. Conversely,

RPC values below 1 point towards underdispersive and overconfident forecasts.

However, such an interpretation has limitations. As discussed in Kumar et al. (2014), the definition of

the model predictable component PCmod depends on the particular forecast model used and cannot nec-

essarily be indicative of the true potential predictability. Differences between actual skill levels (or PCobs
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as estimated through the correlation r between the ensemble mean and observation) and potential skill of

a perfect model (or PCmod as estimated through the average correlation rper f between the ensemble mean

and the individual ensemble members) are related to errors in the model that lead to imperfect biased

forecasts. Furthermore, the above interpretation is only valid with a sufficiently large hindcast length and

ensemble size. With an insufficient sample size, estimates of RPC can fluctuate above or below unity

purely by chance, and no physical conclusions can be reached about whether the ensemble system is

under- or overdispersive overall.

Here we analyse the RPC of the NAO index and, similar to Eade et al. (2014), the global MSLP fields

simulated by the individual DEMETER and ENSEMBLES hindcasts. In order to study the impact of

the hindcast length on NAO skill and RPC, we analyse a large number of combinations of hindcast

years based on the full hindcast period 1960–2001. Combinations of hindcast years were generated

by randomly and independently sampling from the very large number of all possible combinations of

5,10,15 . . .40 years out of the total 42-year period. For example, there exist 861 possible combinations

of randomly sampled 40 years. For shorter sub-periods there exist more conceivable combinations with

a maximum of more than 500 billion possible combinations for 20-year periods. In order to have a

comparable sample size for all considered sub-periods, our results are based on 20,000 draws from the

combinations, with repetition.

We have tested the sensitivity and robustness of our results for longer hindcast periods using two ap-

proaches: The first approach involved modifications of the random draws of hindcast years by allowing

resampling of years in each draw (with replacement). The second approach is based on the finding that

the maxima of the RPC distributions for shorter hindcast periods up to 20 years can be approximated very

well by an exponential decay function, dependent on hindcast length. These exponential fits in turn pro-

vide an alternative tool to extrapolate the RPC maxima for hindcast periods longer than 20 years. While

both approaches were found to result in some minor differences as to the exact shape of the RPC distri-

butions for long hindcast periods (not shown), the uncertainty ranges from our resampling methodology

as outlined above are consistent with these estimates.

3 Results

The NAO correlation coefficients between the ensemble mean and the verification data for three different

hindcast periods are given in Table 1 for the DEMETER and ENSEMBLES individual models for both the

Z500-based and MSLP-based definitions of the NAO index. Consistent with the results of Müller et al.

(2005) it shows that there are differences in the level of predictive skill between the two shorter sub-

periods. This itself is indicative that a 20-year period may be insufficient for a robust estimation of overall

predictive skill. The correlation between the modelled NAO indices and observations tends to be higher

for the late period 1980–2001 than for the early period 1960-1979. Some of the individual models show

significant correlations for the 20-year sub-periods (0.59 for D MEFR, 0.45 for D ECMF and 0.60 for

E KIEL). These levels of skill are comparable with the values reported in Scaife et al. (2014). However,

when we look at the entire 42-year hindcast period 1960–2001, the correlations are considerably lower.

From the above described sampling algorithm, distributions of RPC values for the NAO index (Z500

and MSLP) have been derived. Figure 1 shows these distributions for the Z500-based index as box-and-

whisker plots from the three DEMETER models D MEFR, D UKMO and D ECMF together with the

two more recent versions of the ECMWF seasonal forecast model: the version used in ENSEMBLES
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E ECMF E UKMO E KIEL E INGV E MEFR

1960-1979 -0.16 (-0.35) 0.03 (0.17) 0.12 (0.60) 0.03 (-0.39) 0.07 (0.19)

1980-2001 0.20 (0.35) 0.02 (-0.08) -0.07 (0.11) 0.22 (0.30) 0.35 (0.33)

1960-2001 0.07 (0.08) -0.02 (0.00) -0.08 (0.26) 0.10 (-0.02) 0.21 (0.26)

D MEFR D ECMF D UKMO

1960-1979 0.26 (0.35) -0.42 (0.10) -0.05 (-0.47)

1980-2001 0.59 (0.32) 0.45 (-0.05) 0.21 (0.02)

1960-2001 0.38 (0.20) -0.12 (-0.06) -0.15 (-0.27)

Table 1: NAO correlations between model ensemble mean and observations based on Z500 (MSLP) for different

hindcast periods. The first part shows results from the ENSEMBLES models. The second part shows results from

the DEMETER models. Correlations where a t-test suggests significance at the 95% level are marked in bold.

(identical to ECMWF’s System 3) and the currently operational System 4 (for which only 30 years of

hindcast data exist, see also Stockdale et al. (2015)). For each ensemble the RPC distributions for dif-

ferent lengths of hindcast data between 5 and 40 years (25 years in the case of System 4) are displayed.

As the length of the hindcast period increases, the RPC values for all models decrease and the spread

narrows. For the 5-year period, the RPC range includes both large negative and large positive values.

For the 20-year period, in particular, the upper range of the RPC still clearly exceeds values of 1. Qual-

itatively very similar behaviour was found for the analysis using either the MSLP-based NAO index or

the other ENSEMBLES models, see figures in the Supplementary Material of the published paper.

Since present-day operational seasonal forecast models are likely to be more skilful than the typical

ENSEMBLES models, as is the case of GloSea5, the upper range of the RPC distribution will be more

representative of possible RPC values from contemporary models. However, when 40 years of data are

considered, no single model except for one gives RCP values above 1 (the upper whisker of the distribu-

tion for D MEFR just reaches 1). Indeed, the entire distribution of RPC values for 40 years lies below 1

for all but one model.

Following Eade et al. (2014), Figure 2 shows global maps of RPC for mean sea level pressure fore-

casts in DJF. The value of RPC shown is the maximum RPC for each gridpoint distribution based on

5,000 samples of possible combinations of hindcast years. For clarity we only show the three individual

DEMETER models for sub-periods of 5 (top row), 20 (middle row) and 40 (bottom row) hindcast years.

The corresponding figures for the ENSEMBLES models can be found in the Supplementary Material of

the published paper. For a 5-year sampling period, the maximum RPC is above 1 everywhere. When

20 years of hindcast data are available, the maximum RPC in general decreases, with the tropics already

indicating values below 1. At 40 years, most of the regions of the world have maximum RPC values that

fall below 1. Contrary to Eade et al. (2014) this shows that when a sufficiently long hindast period is

used so that the distribution of RPC converges, the seasonal forecast ensembles from individual models

are not underconfident (overdispersive) but rather overconfident (underdispersive), in particular in the

tropics.

4 Summary and Conclusion

In this study, we have investigated the seasonal forecast NAO skill during DJF in terms of correlation

between the ensemble mean and observations for a variety of seasonal forecast models of the DEMETER
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Figure 1: Box-and-whisker plots of the distributions of RPC of the Z500-based NAO index in DJF as a function of

the number of hindcast years used in the three DEMETER models (a–c), the ENSEMBLES model of ECMWF (d)

and ECMWF’s currently operational forecasting System 4 (e). The box includes 50% of the data and the whiskers

indicate approx. the 99% and 1% percentiles of the distribution. Outliers are marked with crosses.
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Figure 2: Maximum value of each RPC grid point distribution for mean sea level pressure in DJF. Results for 5-

year, 20-year and 40-year time periods are shown for the three individual DEMETER model ensembles. Regions

of negative RPC are masked out in white.
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and ENSEMBLES projects over different time periods. For 20-year hindcast periods significant corre-

lations for the NAO index were found, in agreement with the results presented in Scaife et al. (2014).

However, no model produced significant correlations throughout the entire 42-year period where sea-

sonal hindcasts were available (1960–2001).

In addition, we have analysed the ‘Ratio of Predictable Components’ (RPC) for seasonal hindcasts of

the NAO and mean sea level pressure in DJF. For periods of 20 years or less, the distribution of possible

RPC includes values greater than one which indicate overdispersive conditions. However, for periods

of 40 years, the maximum of all the distributions of RPC is always less than 1. This implies that the

ensembles, if evaluated on longer time scales, are not overdispersive. Indeed, by studying global surface

pressure, the overriding problem with single-model ensembles is their underdispersiveness in the trop-

ics. The interpretation of our results can lead to the conclusions that the findings of Eade et al. (2014)

merely suggest an inadequately small sample size where extreme values of the RPC can easily be found

above 1 when a 20-year sample size is used. These extremes, however, all fall to values below 1 for the

tested model hindcasts if a 40-year hindcast period is used in the statistical analysis. Our results sug-

gest that increasing the sample size of GloSea5 by extending its current seasonal hindcasts length back

to the 1960s would enable to test the robustness of GloSea5’s dispersion behaviour on longer time scales.

Although our results suggest that single model ensembles are not overdispersive on average, it is still

possible that current-generation climate models simulate a smaller range of predictability than does the

real world. This might occur if the real climate attractor is more heterogeneous than the model attractor.

That is to say, the real-world attractor may have more distinct regions of stability and instability than

does the more diffusive climate-model attractor. Hence when the real world is evolving in a region of

strong predictability, the ensemble may be overdispersed and hence underconfident. Conversely, when

the real world is evolving in a region of weak predictability, the ensemble may be underdispersed and

hence overconfident. This is consistent with the notion that state-space probability distributions for the

real atmosphere show evidence of quasi-stationary regimes, whilst simulated probability distributions,

especially from low-resolution climate models, tend to appear overly Gaussian (Dawson et al. (2012)).

The analysis of Eade et al. (2014) also studied ensemble forecasts from decadal prediction experiments

over the 46-year period 1960–2005. They concluded that the RPC for mean sea level pressure over the

globe is also underconfident (overdispersive), similar to the seasonal forecast ensembles. However, the

analysis is based on 4-year averages of sea level pressure where the forecasts starting every year overlap

in time. This implies a large degree of dependence between the individual forecasts as there is consider-

ate overlap between the target forecast periods from different start years. Thus the effective independent

sample size of the hindcasts is not 46 but rather of the order of 10. By analogy, a similar situation would

arise if one wanted to forecast the winter anomalies from seasonal forecasts pooled together from sev-

eral months of start dates across the autumn and early winter of a given year; these forecasts cannot be

counted as independent samples.

The number of members in the forecast ensemble is another source of sampling uncertainty when esti-

mating the correlation skill and RPC. While this study is focused on the effect of the hindcast length,

work to analyse how the ensemble size influences these estimates is under way.
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