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Calibration of Medium-Range Weather Forecasts

Abstract

Statistical postprocessing techniques serve to improve the quality of numerical weather forecasts, as
they seek to generate calibrated and sharp predictive distributions of future weather quantities. This
document reviews the state of the art in statistical postprocessing, with focus on potential applica-
tions to the European Centre for Medium-Range Weather Forecasts (ECMWF)’s Integrated Fore-
casting System (IFS). At present, a recommended way to proceed is to apply well established, state
of the art postprocessing techniques, such as nonhomogeneous regression or Bayesian model av-
eraging, to each univariate weather quantity separately, with training data usefully augmented by
reforecast datasets. Areas requiring further research are identified, in particular the suitable size and
efficient use of reforecast datasets, and the generation and evaluation of probabilistic forecasts of
combined events and spatio-temporal weather trajectories, thereby addressing spatial, temporal and
cross-variable dependence structures.

1 Introduction

Numerical weather prediction Weather forecasting has traditionally been viewed as a deterministic
problem, drawing on highly sophisticated numerical models of the physics and chemistry of the atmo-
sphere. Equipped with state of the art computational resources including supercomputers, weather cen-
ters have run carefully designed numerical weather prediction (NWP) models to generate single-valued
forecasts of future states of the atmosphere.

While such is still the case today, weather prediction has been transformed through the operational im-
plementation of ensemble prediction systems (Palmer 2002; Gneiting and Raftery 2005; Leutbecher and
Palmer 2008). An ensemble forecast is a collection of NWP model integrations, using slightly differ-
ent initial conditions and/or model variants, with the output being a probabilistic forecast, providing an
estimate of the uncertainty of the forecast, and ideally being interpretable as a random sample from the
predictive distribution of future weather states. From users’ perspectives, probabilistic forecasts are nec-
essary for optimal decision making (Krzysztofowicz 2001; Palmer et al. 2005/06; Gneiting 2008), and
the added economic value of ensemble forecasts has been demonstrated persuasively (Richardson 2000;
2001; Palmer 2002), including but not limited to the case of the European Centre for Medium-Range
Weather Forecasts (ECMWF) ensemble.

The ECMWF’s Integrated Forecasting System viewed as a 52-member NWP ensemble The global
medium-range forecasting system run by ECMWF comprises both a single run high-resolution forecast
(HRES) and a 51-member ensemble of lower-resolution forecasts (ENS), as described by the ECMWF
Directorate (2012).

The HRES works at a horizontal resolution of 16 km and provides the ECMWF’s most sophisticated
and computationally demanding forecasts of future weather states at prediction horizons up to ten days
ahead.

The ENS is an ensemble of lower-resolution forecasts that has been available operationally since De-
cember 1992 (Buizza and Palmer 1995; Molteni et al. 1996). Its 51 members operate at 32 km horizontal
resolution. One forecast, termed the control (CNT) forecast, is run from the operational ECMWF analy-
sis. Fifty further model runs, termed the perturbed (PTB) members, are run from slightly different initial
conditions, using initial perturbations generated by the singular vector technique (Buizza and Palmer
1995). To take uncertainties in the model formulation into account, the perturbed members furthermore
use slightly distinct model variants in a stochastic setting (Buizza, Miller and Palmer 1999). Twice a
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week, the ENS is extended to provide forecast guidance up to 32 days ahead at 64 km horizontal resolu-
tion.

Rodwell (2005/06) found that a combined prediction system based on both HRES and ENS performs
significantly better than just ENS in forecasting the probability of precipitation occurrence over Europe.
These and similar findings strongly support the point of view recently emphasized by the ECMWF
Directorate (2012, p. 11), in that the HRES and ENS are to be considered as an “inseparable pair”
that ought,

whenever possible, be used together to provide the most detailed description of future weather and of the asso-
ciated uncertainties.

Jointly, the HRES and the ENS comprise the ECWMF’s Integrated Forecasting System (IFS). In what
follows, we think of the IFS as a 52-member ensemble system, consisting of the HRES member, the
CNT member, and 50 exchangeable PTB members, with the latter being statistically indistinguishable.

Statistical postprocessing: Bias correction vs. ensemble calibration As individual NWP model runs
and ensemble systems are subject to biases and dispersion errors, their predictions can be improved by
statistical techniques (Glahn and Lowry 1972; Gneiting and Raftery 2005).

Traditionally, bias correction techniques have been applied to NWP output using regression methods,
in an approach commonly known as model output statistics (MOS; Wilks 2011). Pioneered by Glahn
and Lowry (1972) and Klein and Glahn (1974), and further developed and studied by Carter, Dallavalle
and Glahn (1989), Wilson and Vallée (2002; 2003), Mass et al. (2008) and Glahn et al. (2009a), among
others, MOS approaches transform a single-valued NWP output into another single-valued forecast,
thereby correcting systematic errors in the central tendencies of model output, either at observation sites
or directly on the model grid. Essentially, MOS approaches exploit statistical patterns in the relationships
between observations and the outputs of the specific NWP model version at hand. A related, but less
successful technique is the perfect prog (PP) method that identifies statistical patterns in the relationships
between distinct meteorological variables in observational records and applies them to the output of the
NWP model version at hand (Wilks 2011).

Despite being widely applied and being powerful, bias correction techniques have natural limitations,
as they aim at single-valued forecasts only.1 When considering an NWP ensemble, bias correction of
individual ensemble members is useful in adjusting errors in central tendencies, but does not readily
provide a fully fledged ensemble calibration (Vannitsem 2009; Vannitsem and Hagedorn 2011; Cui et
al. 2012). For example, if each member is bias corrected by using a conditional mean, the postprocessed
ensemble is bound to be underdispersed. For skewed variables, such as precipitation amounts or wind
speeds, Flowerdew (2012, p. 7) summarizes commonly encountered problems by noting that

[t]he statistical features of precipitation argue against the use of simple bias corrections. Overall additive terms
would affect all forecasts of zero precipitation. Corrections which are multiplicative or only affect nonzero
forecasts do not help to adjust the frequency of zero precipitation forecasts.

Indeed, if we were to bias correct a single-valued NWP output for a precipitation amount, for which
a highly skewed predictive distribution is adequate, would we want to transform into the mean, the

1This comment does not apply when a probability forecast of a binary event is sought, such as a precipitation amount or a
temperature being above a certain threshold. In these settings, MOS approaches generate probability forecasts, as opposed to
single-valued forecasts, with logistic regression being a particularly powerful technique (Applequist et al. 2002).
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median, or perhaps another quantile? Following up on the work of Murphy and Daan (1985) in the
meteorological literature, Gneiting (2011) analyses and describes the pitfalls and challenges that arise in
this type of setting, in that the forecasting task and scoring functions used need to be carefully matched.

As noted, a preferable approach to statistical postprocessing, which avoids these pitfalls and allows for
optimal decision making (Palmer et al. 2005/06; Gneiting 2008), is to generate probabilistic forecasts
that take the form of probability distributions over future weather quantities and events. In this context,
statistical postprocessing techniques aim at generating calibrated and sharp probabilistic forecasts from
ensemble output, including the case of a single NWP model integration, with the latter being interpretable
as an NWP ensemble with a single member only. Following Murphy and Winkler (1987) and Gneiting,
Balabdaoui and Raftery (2007), the goal in probabilistic forecasting is to maximize the sharpness of the
predictive distributions subject to calibration. Calibration is a multi-faceted, joint property of the fore-
casts and the observations; essentially, the forecasts are calibrated if the observations can be reasonably
interpreted as drawn from the predictive distributions. Sharpness refers to the concentration of the pre-
dictive distributions, and thus is a property of the forecasts only. Evidently, the more concentrated, the
more useful the probabilistic forecast, subject to it being calibrated.

Wilks and Hamill (2007), Bröcker and Smith (2008), Schmeits and Kok (2010) and Ruiz and Saulo
(2012) review and compare methods for ensemble calibration. State of the art techniques include the
Bayesian model averaging (BMA) approach developed by Raftery et al. (2005) and the non-homogeneous
regression (NR), or ensemble model output statistics (EMOS), technique of Gneiting et al. (2005), to be
described in detail below.

Similar needs for bias correction and calibration arise in applications using NWP output, such as hy-
drologic and renewable energy forecasts. For example, operational streamflow and water level forecast-
ing systems, including but not limited to the European Flood Awareness System (EFAS) developed by
Thielen et al. (2009), are increasingly using precipipation forecasts from NWP ensembles to drive hy-
drological models and predictions, as reviewed by Cloke and Pappenberger (2009) and in Appendix A
in this document. Similarly, NWP ensemble forecasts of wind speed are driving state of the art systems
for predicting wind energy power output (Pinson and Madsen 2009; Taylor, McSharry and Buizza 2009;
Traiteur et al. 2012; Pinson 2013). In this context, a natural question is whether statistical postprocess-
ing efforts ought to apply to the weather input, or to the application output, or to both. While further
research and experimentation will be required to address these questions in full, a natural expectation
is that postprocessing efforts undertaken at both levels optimizes the predictive performance, and that if
postprocessing can only be done once, then it is most effectively implemented at the application output
level.

Current postprocessing efforts for the ECMWF’s IFS In the specific case of the ECMWF’s IFS,
there is a stark contrast between postprocessing efforts implemented by Member and Co-operating States
at the national level, and postprocessing techniques studied directly at ECMWF.

Operational implementations in Member and Co-operating States. Table 1 reviews operational postpro-
cessing efforts at the national level based on the most recent available information in the Annual Report
on Application and Verification of ECMWF Products in Member and Co-operating States (known as
Green Book).2 While a majority of Member States has implemented postprocessing procedures, these
are typically restricted to traditional bias correction of the HRES output, and to key variables such as 2m
temperature, precipitation or 10m wind, using some form of model output statistics (MOS) technique,
frequently implemented via Kalman filter (KF) algorithms, as described by Crochet (2004), and in some

2The Green Book reports are available online at www.ecmwf.int/products/greenbook.
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Table 1: Member states (above separator) and co-operating states (below separator) operational statistical post-
processing efforts for the IFS, as described in the Annual Report on Application and Verification of ECMWF
Products in Member and Co-operating States (known as Green Book). Typically, bias correction is applied to key
variables, such as surface temperature and precipitation, and based on the HRES run only, using model output
statistics (MOS), the Kalman filter (KF), which is a special type of MOS approach, or the perfect prog (PP) tech-
nique, respectively. The sporadic ENS calibration efforts use nonhomogeneous regression (NR), rank based (RB)
or CDF matching (CM) methods, respectively. The final column identifies the latest available report, from which
the information quoted has been extracted.

Country Description Source

Austria bias correction (MOS, PP) 2012
ensemble calibration (NR) 2012

Belgium bias correction (MOS, KF) 2012
Finland bias correction (KF) 2012
France bias correction (MOS, KF) 2012

ensemble calibration (RB) 2012
Germany bias correction (MOS, PP) 2012
Greece bias correction (KF) 2012
Iceland bias correction (KF) 2012
Italy bias correction (PP) 2012
Netherlands binary probability forecasts 2010
Norway bias correction (KF) 2012
Portugal bias correction (MOS, KF) 2011
Slovenia bias correction (KF) 2009
Spain bias correction 2012

binary probability forecasts 2012
Sweden bias correction (KF) 2012

binary probability forecasts 2012
Switzerland bias correction (KF) 2012
Turkey bias correction (KF) 2012
United Kingdom bias correction (KF) 2012

Hungary ensemble calibration (CM) 2012
Israel bias correction 2012
Romania bias correction (MOS, PP) 2012
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cases the perfect prog (PP) method. A few member countries have also considered ensemble calibration
techniques, including Austria (Kann et al. 2009; Kann, Haiden and Wittmann 2011), France and Hun-
gary (Ihász et al. 2010),3 and some countries have implemented postprocessing efforts geared at binary
probability forecasts, with Schmeits et al. (2008) describing one such application to lightning.

Research studies at ECMWF. At ECMWF, research and development efforts have focused on ensem-
ble calibration, with Hagedorn (2008), Hagedorn, Hamill and Whitaker (2008), Hamill, Hagedorn and
Whitaker (2008), Hagedorn (2010), Hagedorn et al. (2012) and Pinson (2012) having studied the ap-
plication of ensemble calibration techniques for the ECMWF IFS with notable success.4 For example,
Hagedorn (2008) and Hagedorn, Hamill and Whitaker (2008) reported gains in lead time of two to four
days for predictions of surface temperature when the nonhomogeneous regression technique of Gneiting
et al. (2005) is applied to the ECMWF’s ENS, with the improvement generally being stronger at loca-
tions where the original forecast skill is low, such as in regions with complex terrain and along coastlines.
Hamill, Hagedorn and Whitaker (2008, p. 2630) observed that calibration techniques “dramatically im-
proved” probability of precipitation forecasts from the ECMWF ENS, achieving gains of two days and
more in forecast lead. ECMWF has also carried out development work on products to provide forecasters
with guidance on the risk of potential extreme events, including the extreme forecast index (EFI; Lalau-
rette 2003; Petroliagis and Pinson 2012; Zsoter, Pappenberger and Richardson 2014) and the Probability
of RETurn (PRET; Prates and Buizza 2011), which build on and post-process reforecast data to accunt
for differences between the model and observed climate distributions.

Operational implementations at the ECMWF. Nevertheless, ECMWF has not implemented statistical
postprocessing at the medium-range operationally, with the exceptions of the EFI and products for the
aforementioned EFAS (Bogner and Pappenberger 2011). In contrast, the ECMWF forecast systems at
seasonal and sub-seasonal scales depend considerably on statistical postprocessing (Molteni et al. 2011;
Vitart 2013). For example, the new ECMWF seasonal forecast system (System 4) uses hindcasts to
generate both bias and variance corrections, as described in Sections 2.4 and 3.2 of Molteni et al. (2011).

2 The state of the art in statistical postprocessing

We turn to a review of the state of the art in ensemble calibration for NWP model forecasts, starting with
a general overview, and then discussing nonhomogeneous regression and Bayesian model averaging
approaches in detail.

2.1 Overview

Following the pioneering work of Hamill and Colucci (1997; 1998), various types of ensemble cali-
bration techniques have been developed over the past 15 years, with Wilks and Hamill (2007), Bröcker
and Smith (2008), Schmeits and Kok (2010), Ruiz and Saulo (2012) and Thorarinsdottir, Scheuerer and

3This comment and overview apply to postprocessing efforts specifically for the ECMWF’s ENS. In addition, a number of
member countries support research and development efforts on statistical postprocessing for their own, nationally developed
short- or medium-range systems. For example, the German Weather Service (DWD) and Heidelberg University have a joint
project on ensemble calibration for the COSMO-DE ensemble run by the DWD, with results reported by Büermann (2012),
Feldmann (2012), Scheuerer (2013) and Scheuerer and Büermann (2013).

4Related work on calibrating the ECMWF ENS has also been performed elsewhere, including efforts by Voisin, Schaake
and Lettenmeier (2010), Hamill (2012), Schmeits and Kok (2012) and Courtney, Lynch and Sweeney (2013). At ECMWF,
Doblas-Reyes, Hagedorn and Palmer (2005) and Molteni et al. (2011) have studied ensemble calibration for seasonal forecasts.
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Feldmann (2012) providing reviews and discussions. As noted, ensemble calibration aims to correct for
biases as well as dispersion errors in NWP model output, and the general goal is to maximize the sharp-
ness of the postprocessed predictive distributions subject to calibration. Detailed comparisons between
the predictive performance of the various types of postprocessing techniques yield rankings that depend
on the ensemble system, meteorological variable and prediction horizon at hand.

State of the art techniques include the Bayesian model averaging (BMA) approach developed by Raftery
et al. (2005), and the non-homogeneous regression (NR) or ensemble model output statistics (EMOS)
technique of Gneiting et al. (2005). For these methods, software for the numerical implementation is
available, including the ensembleBMA (Fraley et al. 2011) and ensembleMOS packages in R.5 All
methods involve statistical parameters that need to be estimated from training data, the choice of which
we discuss in Section 4.

To fix the idea, let y denote the weather variable of interest, and write x1, . . . ,xM for the corresponding M
ensemble member forecasts. The NR/EMOS predictive distribution is a single parametric distribution of
the general form

y |x1, . . . ,xM ∼ f (y |x1, . . . ,xM), (1)

where the left-hand side refers to the conditional distribution of the future weather quantity y, given the
ensemble member forecasts x1, . . . ,xM for y.6 On the right-hand side, f is a parametric density function,
with the parameters depending on the ensemble values in ways similar to traditional MOS approaches.
For example, f could be a normal or Gaussian density, where the mean is a bias corrected affine function
of the ensemble mean and the variance is a dispersion-corrected affine function of the ensemble variance.

The BMA approach employs a mixture distribution of the general form

y |x1, . . . ,xM ∼
M

∑
m=1

wm g(y |xm), (2)

where g(y|xm) denotes a parametric density that depends on the specific ensemble member forecast xm

in suitable ways, and where the mixture weights w1, . . . ,wM are nonnegative and sum to 1. For example,
g(y|xm) could be a normal density, where the mean is a bias corrected affine function of xm and the
variance is fixed at a certain value. The mixture weights w1, . . . ,wm reflect the corresponding member’s
relative contributions to predictive skill over a training period. Viewed slightly differently, and relating
closely to the ensemble dressing approach developed by Roulston and Smith (2003), Wang and Bishop
(2005) and Fortin, Favre and Saı̈d (2006), each ensemble member is dressed with a certain kernel g(y|xm).

In general, the NR/EMOS approach tends to be more parsimonious (i.e., less complex and easier to
fit), while the BMA method tends to be more flexible. For example, if f and g are Gaussian, then the
NR/EMOS predictive distribution (1) is necessarily unimodal and symmetric, whereas the BMA pre-
dictive distribution (2), which is a mixture distribution, allows for multimodality as well as asymmetry.
Evidently, the choice of the NR/EMOS predictive density f or the BMA component density g depends
critically on the weather variable of interest, and in what follows we focus on temperature, pressure,
precipitation and wind.

While we restrict attention to the NR/EMOS and BMA approaches, various other techniques are avail-
able, and typically they are similar in spirit to either NR/EMOS or BMA. For example, the ingenious

5The ensembleBMA and ensembleMOS packages are available for download at www.r-project.org. The Matlab
toolbox emtool developed by Jochen Bröcker implements postprocessing techniques described by Bröcker and Smith (2008).

6At the expense of added complexity, we can furthermore condition f on observed variables, or on NWP model forecasts
for quantities other than y. A similar comment applies to the general BMA equation (2), where the component densities g might
also condition on observed variables, or on NWP model forecasts for quantities other than y, as in the approach of Glahn et
al. (2009b).
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approach of Wilks (2009), which originates in a logistic regression setting, can be interpreted within the
NR/EMOS framework (Frei 2012; Roulin and Vannitsem 2012; Scheuerer 2013), and we do so here-
inafter. Similarly, the ensemble dressing technique developed by Roulston and Smith (2003), Wang
and Bishop (2005) and Fortin, Favre and Saı̈d (2006), the approach of Bröcker and Smith (2008), the
ensemble kernel density MOS (EKDMOS) method of Glahn et al. (2009b), the ensemble regression ap-
proach developed by Unger et al. (2009) and the technique of Little, McSharry and Taylor (2009) can be
interpreted within the mixture density framework of BMA.

Nonparametric techniques such as the cumulative distribution function (CDF) matching approach of
Ihász et al. (2010) and Flowerdew (2012) and analog or similarity approaches as studied by Hamill
and Whitaker (2006), and recently in talks by Laurent Descamps and Luca Delle Monache at the In-
ternational Conference on Ensemble Methods in Geophysical Sciences in Toulouse, France, November
12–16, 2012, provide alternatives to the aforementioned techniques7 that may gain prominence as re-
forecast datasets are becoming available. As discussed in the context of the normal quantile transform
by Bogner, Pappenberger and Cloke (2012), approaches of this type have limitations, in that the implied
predictive distributions do not allow for extrapolations beyond the most extreme extant observations.

2.2 Non-homogeneous regression (NR) or ensemble model output statistics (EMOS)

Overview As noted, the NR/EMOS predictive distribution is a single parametric distribution of the
general form

y |x1, . . . ,xM ∼ f (y |x1, . . . ,xM),

where the left-hand side refers to the conditional distribution of the future weather quantity y, given the
ensemble member forecasts x1, . . . ,xM for y, and where the parameters of the density function f on the
right-hand side depend on the ensemble values in ways similar to traditional MOS approaches.

Temperature and pressure For temperature and pressure, Gneiting et al. (2005) employ Gaussian
distributions as predictive densities. Specifically, if N (µ,σ2) denotes a normal or Gaussian density
with mean µ and variance σ2, the NR/EMOS predictive distribution for temperature or pressure is

y |x1, . . . ,xM ∼ N (a0 +a1x1 + · · ·+aM xM, b0 +b1s2), (3)

where

s2 =
1
M

M

∑
m=1

(
xm−

1
M

M

∑
m=1

xm

)2

(4)

denotes the variance of the ensemble values. The bias coefficients a0 ∈ R and a1, . . . ,aM ≥ 0 and the
spread coefficients b0 ≥ 0 and b1 ≥ 0 need to be fitted from training data, with Gneiting et al. (2005)
applying a minimum score approach.8 Hagedorn (2008), Hagedorn, Hamill and Whitaker (2008), Kann
et al. (2009) and Kann, Haiden and Wittmann (2011), among others, have applied this approach to
calibrate temperature forecasts.

7Interpreted broadly, temporally lagged or spatially aggregated ensembles (Theis, Hense and Damrath 2005; Bentzien
and Friederichs 2012; Johnson and Wang 2012; Scheuerer 2013) can also be considered as nonparametric postprocessing
approaches.

8The recently developed Bayesian estimation approach of Richter (2012) and the spatially adaptive approach of Scheuerer
and Büermann (2013) offer alternatives.
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The above formulation assumes that the ensemble members are statistically distinguishable. For the
ECMWF’s IFS, we have a group of 50 exchangeable ENS members, and so a modified form is natural.
Using obvious notation for the HRES, CNT and ENS members of the 52-member IFS ensemble, which
we denote by xHRES, xCNT and x1, . . . ,x50, respectively, we can adapt (3) to this setting, in that

y |xHRES,xCNT,x1, . . . ,x50 ∼ (5)

N

(
a0 +aHRESxHRES +aCNTxCNT +aENS

50

∑
m=1

xm, b0 +b1s2
ENS

)
,

where

s2
ENS =

1
50

50

∑
m=1

(
xm−

1
50

50

∑
m=1

xm

)2

(6)

denotes the variance of the ENS members. The parameters to be fitted from training data are now the bias
coefficients a0 ∈ R, aHRES ≥ 0, aCNT ≥ 0 and aENS ≥ 0, and the spread coefficients b0 ≥ 0 and b1 ≥ 0,
where the nonnegativity constraints can be implemented in ways described by Gneiting et al. (2005) and
Thorarinsdottir and Gneiting (2010).

Quantitative precipitation Probability forecasts for the binary event of a precipitation accumulation
exceeding (or not exceeding) a certain threshold are frequently obtained using logistic regression (Ap-
plequist et al. 2002; Wilks and Hamill 2007) or quantile regression (Bremnes 2004). If a full predictive
distribution is required, these methods have difficulties, in that the probability at distinct thresholds may
not be compatible with each other, nor does the aforementioned approach for temperature and pressure
apply, given that quantitative precipitation is a nonnegative variable, having a point mass at zero, and
typically being heavily skewed for positive precipitation accumulations.

Building on a logistic regression approach, Wilks (2009) proposed an elegant solution, which yields an
NR/EMOS type of predictive distribution. Generalizing his approach slightly, and describing the predic-
tive distribution in terms of the cumulative distribution function (CDF), F(y), for the future precipitation
accumulation, y, and the corresponding ensemble values x1, . . . ,xM, we obtain F(y) = 0 for y≤ 0 and

F(y) =
exp(a0 +a1xα

1 + · · ·+aMxα
M +byβ )

1+ exp(a0 +a1xα
1 + · · ·+aMxα

M +byβ )
for y≥ 0, (7)

which is a type of truncated logistic distribution (Frei 2012). The implied probability of no precipitation
is

F(0) =
exp(a0 +a1xα

1 + · · ·+aMxα
M)

1+ exp(a0 +a1xα
1 + · · ·+aMxα

M)
.

Here, α > 0 and β > 0 are fixed coefficients, with Wilks (2009) selecting α = 1 and β = 1
2 , and other

choices being feasible, based on exploratory analyses, as discussed by Wilks (2009) and Roulin and
Vannitsem (2012). The remaining coefficients a0 ∈ R, a1, . . . ,aM ≥ 0 and b > 0 need to be fitted from
training data. Adapted to the 52-member IFS, specifications such as

F(y) =
exp(a0 +aHRESxα

HRES +aCNTxα
CNT +aENS ∑

50
m=1 xα

m +byβ )
1+ exp(a0 +aHRESxα

HRES +aCNTxα
CNT +aENS ∑

50
m=1 xα

m +byβ )
for y≥ 0 (8)

can be employed, where α > 0 and β > 0 are fixed, while the coefficients a0 ∈ R, aHRES ≥ 0, aCNT ≥ 0,
aENS ≥ 0 and b > 0 are to be fitted from training data. More flexible versions that introduce interaction
terms into (7) and (8), respectively, have been proposed by Ben Bouallègue (2013).
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The behavior of the predictive distributions at high, extreme threshold values is of particular importance,
and the use of extreme value distributions provides a less parsimonious, but interesting and relevant
alternative NR/EMOS approach for potentially skewed weather variables, such as precipitation and wind
speed (Bentzien and Friederichs 2012; Friederichs and Thorarinsdottir 2012; Scheuerer 2013).

Wind A bivariate wind vector can be represented by its zonal (west-east or u) and meridional (north-
south or v) components, or by wind speed and wind direction. In the case of the u and v wind vector
components, the Gaussian NR/EMOS specification (3) applies.

If direct probabilistic forecasts of wind speed are sought, the nonnegativity of the variable needs to be
properly accounted for. Thorarinsdottir and Gneiting (2010) developed an EMOS approach for wind
speed, where the predictive distribution is truncated normal,

y |x1, . . . ,xM ∼ N[0,∞)(a0 +a1x1 + · · ·+aM xm, b0 +b1s2), (9)

with N[0,∞)(µ,σ2) denoting9 a normal distribution with mean µ and variance σ2 that is restricted to the
positive halfaxis, so that it does not have any mass to the left of zero, while the density on the positive
halfaxis is rescaled correspondingly. As usual, the coefficients a0 ∈ R, a1, . . . ,aM ≥ 0 and b > 0 need to
be fitted from training data.

To give an example, Figure 1 shows the postprocessed 48-hour ahead EMOS forecast of the maximum
wind speed on June 14, 2003 at The Dalles, Oregon, a wind surfing hub in the Columbia River Gorge
in the Pacific Northwest of the United States. The vertical black lines represent the eight members of
the University of Washington Mesoscale Ensemble (Eckel and Mass 2005), which take values between
10.1 and 13.3 knots, respectively, with one knot being equal to 0.514 meters per second. The vertical red
lines show the EMOS median forecast, at 15.3 knots, and the respective 77.8% central prediction interval
for the EMOS density forecast. The blue line represents the verifying observation, at 18 knots. Figure
2 illustrates the postprocessed EMOS forecast distributions at The Dalles for the entire period of June
14 through July 31, 2003.10 Adapting now to the 52-member IFS, we can employ a specification of the
form

y |xHRES,xCNT,x1, . . . ,x50 ∼ (10)

N[0,∞)

(
a0 +aHRESxHRES +aCNTxCNT +aENS

50

∑
m=1

xm, b0 +b1s2
ENS

)
,

where s2
ENS is defined in (6), with the coefficients a0 ∈ R, aHRES ≥ 0, aCNT ≥ 0, aENS ≥ 0, b0 ≥ 0 and

b1 ≥ 0 to be fitted from training data.

Thorarinsdottir and Johnson (2011) introduce an extension to wind gusts, while Pinson (2012) and
Schuhen, Thorarinsdottir and Gneiting (2012) develop EMOS approaches that apply to bivariate wind
vectors directly.

9Note that µ and σ2 refer to the mean and the variance of the original normal distribution prior to truncation. The ensemble
variance s2 is defined in (4).

10Figures 1 and 2 are similar to displays presented in Thorarinsdottir and Gneiting (2010), where data from 2008 are used.
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Wind Speed in Knots
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Figure 1: 48-hour ahead NR/EMOS density forecast of maximum wind speed valid June 14, 2003 at The Dalles,
Oregon. The broken black lines represent the eight members of the University of Washington Mesoscale Ensemble
(Eckel and Mass 2005). The red lines show the EMOS median forecast, at 15.3 knots, and the 77.8% central
prediction interval for the EMOS density forecast. The blue line represents the verifying observation, at 18 knots.
One knot equals 0.514 meters per second.
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Figure 2: 48-hour ahead NR/EMOS forecasts of maximum wind speed at The Dalles, Oregon valid June 14 through
July 31, 2003. The EMOS 77.8% prediction interval is shown as a gray and red box. The small black dots represent
the eight members of the University of Washington Mesoscale Ensemble (Eckel and Mass 2005). The large blue
dots mark the verifying wind speed.
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Table 2: BMA implementations for univariate weather quantities, based on the ensemble values xm ∈ R, where
m = 1, . . . ,M. In the case of precipitation amount, we refer to y1/3 ∈ R+, because the gamma kernels apply to
cube root transformed precipitation accumulations (Sloughter et al. 2007). In the case of wind direction, fm ∈ S
is a bias corrected ensemble value on the circle and κm is a concentration parameter, for m = 1, . . . ,M (Bao et
al. 2010).

Weather Quantity Range Kernel Mean Variance

Temperature y ∈ R Normal a0m +a1m xm σ2
m

Pressure y ∈ R Normal a0m +a1m xm σ2
m

Precipitation amount y1/3 ∈ R+ Gamma a0m +a1m x1/3
m b0m +b1mxm

Wind components y ∈ R Normal a0m +a1m xm σ2
m

Wind speed y ∈ R+ Gamma a0m +a1m xm b0m +b1mxm

Wind direction y ∈ S von Mises fm κ−1
m

Visibility y ∈ [0,1] Beta a0m +a1m x1/2
m b0m +b1mx1/2

m

2.3 Bayesian model averaging

Overview As discussed, the BMA predictive distribution is a mixture distribution of the general form

y |x1, . . . ,xM ∼
M

∑
m=1

wm g(y |xm),

where the component or kernel density g(y |xm) denotes a parametric distribution that depends on the
specific ensemble member forecast xm in suitable ways, and where the mixture weights w1, . . . ,wM are
nonnegative and sum to 1. Thus, each mixture component is a parametric probability distribution that is
associated with a given individual ensemble member, with the mixture weight reflecting the member’s
relative contributions to the predictive skill over the training period.

Table 2 sketches BMA implementations for univariate weather variables, including temperature and pres-
sure (Raftery et al. 2005), precipitation (Sloughter et al. 2007), wind speed (Sloughter, Gneiting and
Raftery 2010), wind direction (Bao et al. 2010) and visibility (Chmielecki and Raftery 2011).11 Further-
more, BMA implementations are available for fog (Roquelaure and Bergot 2008), ceiling (Chmielecki
and Raftery 2011) and bivariate wind vectors (Sloughter, Gneiting and Raftery 2013).

We now discuss some of the details of the BMA implementations for temperature, pressure, quantitative
precipitation and wind.

Temperature and pressure For temperature and pressure, Raftery et al. (2005) propose the BMA
specification

y |x1, . . . ,xm ∼
M

∑
m=1

wm N (a0m +a1mxm, σ
2
m), (11)

11Similar tables can be found in Möller, Lenkoski and Thorarinsdottir (2013) and Schefzik, Thorarinsdottir and Gneiting
(2013).
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so that the kernel density g(y |xm) is Gaussian with mean a0m + a1mxm and variance σ2
m.12 The BMA

weights, w1, . . . ,wM, the bias parameters a01, . . . ,a0M and a11, . . . ,a1M ≥ 0, and the variance parameters
σ2

1 , . . . ,σ2
M are fitted on training data in ways described by Raftery et al. (2005). Thus, the BMA mixture

components are normal densities with a linearly bias corrected mean.

Fraley, Raftery and Gneiting (2010) discuss the adaptation of the basic BMA specification (11) to ensem-
bles with exchangeable members. In the case of the ECMWF’S IFS, their proposals lead to a specification
of the form

y |xHRES,xCNT,x1, . . . ,x50 ∼ wHRES N
(
aHRES +bHRESxHRES,σ

2
HRES

)
(12)

+ wCNT N
(
aCNT +bCNTxCNT,σ2

CNT
)
+wENS

50

∑
m=1

N
(
aENS +bENSxm,σ2

ENS
)
,

where the various statistical parameters are to be estimated from training data, under the constraints that
wHRES ≥ 0, wCNT ≥ 0 and wENS ≥ 0 with wHRES +wCNT +50wENS = 1, bHRES ≥ 0, bCNT ≥ 0, bENS ≥ 0,
σ2

HRES > 0, σ2
CNT > 0 and σ2

ENS > 0.

The BMA approach has been applied to ensemble temperature forecasts over Canada (Wilson et al. 2007)
and Iran (Soltanzadeh, Azadi and Vakili 2011), and a real-time implementation over the Pacific North-
west region of the United States, based on the University of Washington Mesoscale Ensemble (UWME;
Eckel and Mass 2005), is available to the general public at www.probcast.com. Alternatives to the
estimation algorithm proposed by Raftery et al. (2005) include the fully Bayesian approaches of Vrugt et
al. (2006) and Di Narzo and Cocchi (2010) and the spatially adaptive technique of Kleiber et al. (2011b)
that uses geostatistical methods.

Quantitative precipitation Sloughter et al. (2007) propose a BMA implementation for quantitative
precipitation, in which the BMA component density g(y |xm) is a Bernoulli–gamma mixture. The
Bernoulli component provides a point mass at zero via logistic regression, specifying that

g(y = 0 |xm) =
exp(c0m + c1mx1/3

m + c2mδm)

1+ exp(c0m + c1mx1/3
m + c2mδm)

,

where δm equals 1 if xm = 0 and equals 0 otherwise, under the constraints that c1m ≤ 0 and c2m ≥ 0. The
continuous part of the kernel density is a gamma density for the cube root transformation, y1/3, of the
precipitation accumulation, with mean µm = a0m + a1mx1/3

m and variance σ2
m = b0m + b1mxm, where the

coefficients are assumed to be nonnegative and need to be fitted using training data.13 Fraley, Raftery
and Gneiting (2010) discuss modifications for ensembles with exchangeable members, which can be
applied to the case of the ECMWF’s IFS, leading to specifications identical in spirit to that in (12) for the
BMA approach with Gaussian components. Finally, supplementing the estimation approach introduced
by Sloughter et al. (2007), spatially adaptive techniques have become available (Kleiber, Raftery and
Gneiting 2011a).

Wind As noted, a bivariate wind vector can be represented by its zonal and meridional components, or
by wind speed and wind direction. In the case of wind components, the BMA approach described above

12In the standard implementation of Raftery et al. (2005), the predictive variance is assumed to be constant across the
ensemble members. This assumption can readily be relaxed.

13In the standard implementation of Sloughter et al. (2007), some of the coefficients are assumed to be constant across the
ensemble members. As in the case of temperature, assumptions of this type can readily be relaxed.
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for temperature and pressure applies. If direct probabilistic forecasts of wind speed are sought, Sloughter,
Gneiting and Raftery (2010) provide a BMA implementation, where the kernel density g(y |xm) associ-
ated with the ensemble member forecast xm is a gamma density with the mean and the variance both
being affine functions of xm. Baran, Nemoda and Horányi (2013) apply this technique to calibrate the
operational Limited Area Model Ensemble Prediction System of the Hungarian Meteorological Service.
Wind direction is a circular variable, and Bao et al. (2010) develop a BMA specification where the kernel
density g(y |xm) is a von Mises density on the circle. Sloughter, Gneiting and Raftery (2013) discuss a
BMA implementation for bivariate wind vectors that employs mixtures of suitably transformed bivariate
normal densities. Again, the adaptations proposed by Fraley, Raftery and Gneiting (2010) for ensembles
with exchangeable members can be applied in the case of the ECMWF’s IFS.

3 Accounting for structure in combined events and weather trajectories

Combined events and weather trajectories Statistical postprocessing techniques such as nonho-
mogenous regression (NR) and Bayesian model averaging (BMA) typically apply to a single weather
variable at a single location and a single look-ahead time. However, in many applications it is critical
that dependencies in combined events and temporal, spatial, or spatio-temporal weather trajectories are
properly accounted for. For example, winter road maintenance requires joint probabilistic forecasts of
temperature and precipitation (Berrocal et al. 2010), air traffic control calls for joint probabilistic fore-
casts of spatial wind fields (Chaloulos and Lygeros 2007), renewable energy forecasting depends on
spatio-temporal weather trajectories (Pinson et al. 2009; Pinson 2013), and when ensemble forecasts are
used to drive hydrologic models, Schaake et al. (2010, pp. 61–62) note that

relationships between physical variables like, e.g. precipitation and temperature should be respected.

If statistical postprocessing proceeds independently for each weather variable, location and look-ahead
time, dependencies between the respective forecast errors are ignored, and it is crucial that they be
restored.

Spatio-temporal aspects Special considerations apply when the goal is the joint calibration of ensem-
ble forecasts for temporal, spatial or spatio-temporal trajectories of a given weather variable. In what
follows we consider the case of time trajectories; spatial or spatio-temporal scenarios can be handled
analogously.

To obtain physically realistic, calibrated ensemble forecasts of time trajectories, it is essential that we
address the following issues.

• The postprocessed univariate predictive distributions at distinct lead times need to be consistent
among each other – unwarranted, abrupt change is to be avoided.

• The postprocessed ensemble member trajectories need to show physically realistic behavior across
lead times.

To address the former aspect, which concerns the univariate marginal distributions only, constraints can
be put on the BMA or NR coefficients, so that they vary smoothly across lead times, thereby ensuring the
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temporal consistency of the postprocessed predictive distributions. Copula methods are ideally suited to
addressing the latter requirement, and we discuss them in what follows.

In this context, a useful distinction is that between EPSgrams and plumes, as described in Sections 5.2
and 3.4.3 of Persson (2011), respectively. EPSgrams serve to illustrate univariate predictive distributions
only; thus, if the ensemble calibration effort is aimed at EPSgrams, it suffices to address the former as-
pect. In contrast, plumes show individual ensemble member trajectories, and if the ensemble calibration
effort aims at them, both of the above aspects are to be addressed.

Sklar’s theorem Taking a technical perspective momentarily, standard approaches to statistical post-
processing yield a univariate postprocessed predictive cumulative distribution function (CDF), Fl , for
each univariate weather quantity, Yl , where l = 1, . . . ,L, with the multi-index l = (i, j,k) referring to
weather variable i, location j and look-ahead time k. What we seek is a physically realistic and consis-
tent multivariate or joint predictive CDF, F , which, when restricted to each univariate weather variable,
reduces to F1, . . . ,FL, respectively. By a celebrated theorem of Sklar (1959), every multivariate CDF F
with this property can be represented in the form

F(y1, . . . ,yL) = C(F1(y1), . . . ,FL(yL)) for y1, . . . ,yL ∈ R,

where C : [0,1]L→ [0,1] is a so-called copula, i.e., a multivariate CDF with standard uniform marginal
distributions.

Parametric copula approaches Maintaining the technical point of view, Sklar’s theorem demonstrates
that standard approaches to statistical postprocessing can accommodate any type of joint dependence
structure for combined events, provided that a suitable copula function is specified. If the dimension L is
small, or if specific structure can be exploited, such as temporal or spatial structure, parametric families
of copulas can be employed, such as those reviewed by Schölzel and Friederichs (2008). For example,
the approaches of Gel, Raftery and Gneiting (2004), Berrocal, Raftery and Gneiting (2007; 2008), Pinson
et al. (2009), Berrocal et al. (2010), Schuhen, Thorarinsdottir and Gneiting (2012) and Möller, Lenkoski
and Thorarinsdottir (2013) invoke Gaussian copulas.14

Approaches based on empirical copulas If L is huge and no specific structure can be exploited, one
needs to resort to non-parametric approaches, thereby adopting the multivariate rank order structure
in historical weather observations or the current ensemble forecast, as embodied in empirical copulas
(Schefzik, Thorarinsdottir and Gneiting 2013). Specifically, the Schaake shuffle (Clark et al. 2004;
Schaake et al. 2007; Voisin, Schaake and Lettenmeier 2010; Voisin et al. 2011) borrows the rank order
structure from suitably chosen past weather records, whereas the ensemble copula coupling approach
draws on rank order information supplied by the current ensemble forecast.

Ensemble copula coupling While the origins of the ensemble copula coupling (ECC) technique lie
in the work of Bremnes (2007) and Krzysztofowicz and Toth (2008), and in a personal communica-
tion by Tom Hamill in summer 2009, the term ECC appeared first in the work of Schefzik (2011).
Schefzik, Thorarinsdottir and Gneiting (2013) provide a detailed discussion from both theoretical and

14In some cases, this is done explicitly, in others implicitly. A different approach uses mixtures of multivariate normal
distributions, such as in Schölzel and Hense (2011) or Sloughter, Gneiting and Raftery (2013). In this latter case, each mixture
component can be linked to a Gaussian copula.
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applied perspectives, show that techniques developed by Flowerdew (2012), Pinson (2012) and Roulin
and Vannitsem (2012) can be interpreted within this framework, and apply ECC to the ECWMF’s ENS
system. Essentially, ECC is a multi-stage postprocessing procedure that generates a postprocessed en-
semble with the same number of members as the original ensemble, and furthermore with the same rank
order structure as that in the original ensemble, as follows.

1. Apply state of the art statistical postprocessing techniques to obtain calibrated and sharp predictive
distributions for each weather variable, location and look-ahead time individually.

2. Draw a synthetic or statistical ensemble of the same size as the original ensemble from each uni-
variate, postprocessed predictive distribution. Specifically, if the original, dynamic ensemble has
M members, and Fl is the postprocessed predictive CDF for the future weather quantity Yl , the
statistical ensemble can taken to comprise equally spaced quantiles of Fl ,15 such as

x̃l,m = F−1
l

(
m− 1

2
M

)
or x̃l,m = F−1

l

(
m

M +1

)
(13)

respectively, where m = 1, . . . ,M. This is done for each weather quantity Yl individually, until all
indices l = 1, . . . ,L have been covered.

3. Reassign the postprocessed values x̃l,1, . . . , x̃l,M to the M members in such a way that the rank order
structure of the raw ensemble is restored.

As Schefzik, Thorarinsdottir and Gneiting (2013) show, this type of procedure is equivalent to adopting
the empirical copula of the raw ensemble, thereby justifying the term ensemble copula coupling. The
key idea, however, is straightforward, in that the ECC postprocessed ensemble inherits the multivariate
rank dependence structure from the raw ensemble, thereby capturing the flow dependence, as explained
colorfully by Flowerdew (2012, p. 17):

The key to preserving spatial, temporal and inter-variable structure is how this set of values is distributed among
ensemble members. One can always construct ensemble members by sampling from the calibrated PDF, but this
alone would produce spatially noisy fields lacking the correct correlations. Instead, the values are assigned to
ensemble members in the same order as the values from the raw ensemble: the member with the locally highest
rainfall remains locally highest, but with a calibrated rainfall magnitude.

The defining feature of the ECC approach, namely, the preservation of the rank order structure in the
raw ensemble, also sets its limitations, in that ECC is unable to fix any inconsistencies between the
postprocessed marginal distributions themselves, and operates under a perfect model assumption for the
dependence structures across weather variables, locations and look-ahead times. It is therefore to be
expected that in low-dimensional or highly structured settings parametric techniques outperform ECC,16

provided that a sufficient supply of training data permits the statistical correction of dependence struc-
tures. This is a critically important cutting-edge area of interdisciplinary research, with considerable
progress likely to materialize over the next decade.

15The use of equally spaced quantiles has also been proposed by Hagedorn (2010) and Hagedorn et al. (2012).
16The recent study of Schuhen, Thorarinsdottir and Gneiting (2012) on wind vectors, where each site and look-ahead time

is considered individually — and thus the dimensionality is L = 2 only, corresponding to the two wind vector components —
illustrates this type of situation.
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4 The choice of training data

Using observations vs. using analyses Statistical postprocessing is based on the idea of exploiting
structured patterns seen in past forecast-observation pairs in order to correct any systematic deficiencies
in the raw model output. Thus, the use of ensemble calibration techniques depends on the availability of
training data, consisting of historic ensemble forecasts and the corresponding verifying values. In partic-
ular, the nonhomogeneous regression (NR) and Bayesian model averaging (BMA) techniques described
in Section 2 require coefficients and statistical parameters to be estimated from training data. In doing
so, one typically uses optimum score approaches (Gneiting et al. 2005; Gneiting and Raftery 2007), with
the classical technique of maximum likelihood estimation (Raftery et al. 2005; Wilks 2011, Section 4.6)
being a special case thereof.17

Either station observations or analyses can serve to provide the verifying values in the training set. Station
observations have the appealing property that they are model inpedendent, as opposed to the use of
analyses, which bear the danger of missing intricate features in weather field observations. Therefore,
station observations are natural choices for training purposes.18 For example, synoptic observations
(SYNOPs) from the Global Telecommunication System (GTS) have been available and in use at the
ECMWF (Haiden, Rodwell and Richardson 2012). Such an approach requires that the raw ensemble
output is interpolated from the model grid to the station locations. The UK Met Office’s Intelligent Grid
Point Selection (IGPS) approach along with lapse rate corrections in the case of temperature is a state of
the art technique for doing this (Sheridan et al. 2010).

Statistical postprocessing directly on the model grid and over large, potentially global areas, particularly
over the oceans or above the surface level, where observational assets are scarce, or for variables not
directly measured at weather stations, may necessitate the use of an analysis to provide verifying values
in training sets. While this is a viable and attractive option, the above caveat applies, and any such
efforts ought to be subject to scrutiny, to avoid undue influences of any NWP model peculiarities on the
postprocessing. Considerations and experiments similar to those reported in Box A of Hagedorn (2010)
and Section 4.3 of Hagedorn et al. (2012) seem helpful here.

Rolling training periods and adaptive estimation Typically, the training data are taken from a rolling
training period consisting of the recent past, including the most recent available ensemble forecasts along
with the respective verifying values, with common choices for the length of the training period ranging
from 20 to 40 days. In schemes of this type, the training set is updated continually, thereby allowing the
estimates to adapt to changes in the seasons and in large scale weather regimes. Clearly, there is a trade-
off here, in that larger training periods may allow for better estimation in principle, thereby reducing
estimation variances, but may introduce biases due to seasonally varying effects and relationships. More
flexible, adaptive estimation approaches such as recursive maximum likelihood techniques have been
explored by Pinson and Madsen (2009), Raftery, Kárný and Ettler (2010) and Pinson (2012).

In addition to deciding about the temporal extent of the training sets, choices regarding their spatial
composition are to be made. Local approaches use training data from the station location or grid box
at hand only, resulting in distinct sets of coefficients that are tailored to the local terrain, while regional
approaches composite training sets spatially, to estimate a single set of coefficients that is then used over
an entire region (Thorarinsdottir and Gneiting 2010). Recently, flexible spatially adaptive approaches
have been developed that estimate coefficients at each station location individually, interpolating them

17For alternative approaches see Section 2.
18This argument also supports the use of station observations for verification purposes.
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to sites where no observational assets are available (Kleiber, Raftery and Gneiting 2011a; Kleiber et
al. 2011b; Scheuerer and Büermann 2013).

Using reforecast datasets Introduced by Hamill, Whitaker and Mullen (2004), reforecasts are retro-
spective weather forecasts, where today’s NWP models are applied to past initialization and prediction
dates. As the reforecasts are based on the model version that is currently run operationally, the availabil-
ity of reforecast datasets can result in massive enlargements of training sets for statistical postprocessing.
For example, if we seek to calibrate an ensemble forecast in mid June 2013, and reforecasts with the
same ensemble system are available since 1980, we can augment the training set by the ensemble refore-
casts and the corresponding verifying values for each June, or perhaps each May, June and July, from
1980 through 2012.

In the United States, Hamill, Whitaker and Mullen (2004), Hamill, Whitaker and Wei (2004), Hamill
and Whitaker (2006), Whitaker, Wei and Vitart (2006) and Hamill and Whitaker (2007), among others,
have successfully used the National Centers for Environmental Prediction (NCEP) ensemble reforecast
in statistical postprocessing. For example, Hamill and Whitaker (2006) explored the use of the nonpara-
metric analog technique, which has particularly high demands in terms of the quantity of training data,
and becomes a powerful alternative when massive amounts of reforecast data are available.

In Europe, the use of reforecast data to calibrate the ECMWF’s ENS has been studied with focus on
temperature (Hagedorn 2008; Hagedorn, Hamill and Whitaker 2008; Ihász et al. 2010; Vannitsem and
Hagedorn 2011; Hagedorn et al. 2012) and precipitation (Hamill, Hagedorn and Whitaker 2008; Ihász
et al. 2010; Hamill 2012; Roulin and Vannitsem 2012). Specifically, Hagedorn (2008) and Hagedorn,
Hamill and Whitaker (2008) apply the NR technique of Gneiting et al. (2005) to calibrate ensemble fore-
casts of surface temperature, using either reforecast training sets or a traditional 30-day rolling training
period. At prediction horizons up to three days, the added value of the reforecast data is small; at larger
prediction horizons, calibration on reforecast data yields major gains compared to the 30-day training
period. As regards precipitation, Hamill, Hagedorn and Whitaker (2008) report major benefits from the
use of reforecast data for all lead times, with the improvement in the predictive performance being the
most pronounced at higher thresholds. For example, at a threshold of 10 mm, 2-day ahead probability of
12-hourly precipitation forecasts calibrated on reforecast data are as skillful as half-day ahead forecasts
calibrated on a 30-day training period.

Design of operational reforecast datasets While the aforementioned results make a persuasive case
for the use of reforecast data in ensemble calibration, it is far from obvious how an operational refore-
cast system ought to be optimally designed and implemented (Hagedorn 2008). As Hamill, Hagedorn
and Whitaker (2008) note, three key questions are to be addressed in finding the best possible compro-
mise between costs and benefits, given limited computational resources. How many members should an
operational reforecast ensemble comprise? How many years should it go back in time? And at what
frequency should the reforecast ensemble be run — every day, every third day, every week, every tenth
day, or perhaps every two weeks only?

The empirical studies of Hagedorn (2008), Hagedorn, Hamill and Whitaker (2008) and Hamill, Hage-
dorn and Whitaker (2008) address these questions for the ECMWF’s ENS, using an experimental dataset
comprising 15-member ensemble reforecasts for the 20-year period from 1982 through 2001, with re-
forecasts computed once weekly for the fall season. To summarize the findings, the improvement by the
use of daily (as opposed to weekly) reforecasts generally is small, and the inclusion of further years in the
reforecast dataset yields higher benefits than the inclusion of further ensemble members. Based on these
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experiments and consideration of additional operational requirements and constraints, the current oper-
ational ensemble reforecast at the ECMWF comprises five members, including the CNT member and
four PTB members, which are run once every week over the past 20 years (Hagedorn 2008; Richardson
2012).

While these choices result in a well balanced compromise between costs and benefits, matters are con-
siderably complex, as exemplified by Hagedorn (2010), who combines simple bias correction techniques
for temperature on a 30-day rolling training period with the NR ensemble calibration method trained on
reforecast data. Roulin and Vannitsem (2012, p. 886) fit ensemble calibration techniques for quantita-
tive precipitation forecasts based on the ECMWF’s ENS on training datasets with different numbers of
ensemble members, summarizing that

As the size of the hindcasts is low compared to the full operational ensemble, the regression parameters should
be corrected for biases by using, for instance, the so-called regression calibration method.

These experiences serve to illustrate a critical point, in that the optimal choice of training data, including
the design of operational reforecast datasets, and the best choice of statistical postprocessing techniques
to be used, depend on each other, thus calling for a feedback loop and a periodic, joint reassessment
of operational efforts. For example, at a given computational budget, less frequent reforecasts using all
members might be preferable over more frequent reforecasts using a subset of members only, as they
avoid the need for the type of corrections discussed by Roulin and Vannitsem (2012).

In addition to empirical studies, there is scope for pertinent, theoretically informed work on these issues,
based on considerations of effective sample sizes (Wilks 2011, p. 147; Hagedorn, Hamill and Whitaker
2008) and the asymptotic theory of statistical inference in dependent data settings. As a simple illus-
tration, Appendix B provides a tentative discussion of the desirable size of a reforecast dataset when
the goal is the estimation of extreme quantiles of the model climate, which is essential to the use of the
ECMWF’s extreme forecast index (EFI; Lalaurette 2003). Similar considerations might inform decisions
on the tradeoff between costs and benefits when the goal is statistical postprocessing.

5 Recommendations

Recommendations for implementation, research and development State of the art statistical post-
processing processing techniques can significantly improve the skill of medium-range forecasts of sur-
face weather parameters. National and international weather centers worldwide are beginning to move
towards the operational implementation of ensemble calibration techniques. For example, the National
Research Council (2012, p. 37) recommends that the United States National Weather Service (NWS)

[. . . ] needs to employ statistical techniques to post-process its ensemble forecasts so as to obtain calibrated
probabilistic forecasts — these are now within reach. Other national agencies have not yet started issuing
probabilistic forecasts of the main weather and water elements, such as temperature, precipitation, and wind
speed, on a regular basis, so this is an area in which the NWS has an opportunity to take the lead globally.

There is a strong case to pursue statistical postprocessing at the medium-range operationally, to ensure
that the most powerful methods and techniques available are being applied, resulting in full ensemble
calibration rather than just bias correction, to take full advantage of the 52-member IFS rather than just
the HRES run — a critical task that has recently been emphasized by the ECMWF Direcorate (2012).
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Recommendations for implementation The following summarizes recommendations for an initial
implementation of an operational ensemble calibration system using ECMWF forecasts.

1. In order to gain maximum benefit from the ECMWF medium-range NWP forecasts, it is recom-
mended that statistical postprocessing is applied to the IFS output.

2. The calibration could be done, for example, for 2m temperature, precipitation, 10m wind speed
and cloud cover as shown on the standard ECMWF EPSgrams, using well established parametric
ensemble calibration techniques, such as nonhomogeneous regression (NR) or Bayesian model
averaging (BMA), with suitable ramifications that ensure temporal consistency across lead times.
Data from synoptic observations (SYNOPs) stations that report via the Global Telecommunication
System (GTS), or from local networks, can be used as observations in training sets as well as for
verification.

Recommendations for research and development The following identifies cutting edge areas that
are in critical need of research and development.

1. In order to augment training sets, it is recommended that operational ensemble reforecasting efforts
be continued, expanded and strengthened. As decisions about the best design of reforecast datasets
and about the optimal choice of statistical postprocessing techniques depend on each other, a pe-
riodic, joint reassessment of ensemble calibration and ensemble reforecast efforts is essential.19

Both empirical and theoretical work has the potential of informing such decisions.

2. The development of model grid based products can also be considered, possibly using analyses for
training purposes.

3. Research and development is called for to devise more sophisticated methods for the statistical
postprocessing of combined events20 and, closely related, for the development of theoretically
principled techniques for the evaluation of probabilistic forecasts of multivariate quantities and
events.

Another important consideration is that insights from byproducts of statistical postprocessing, such as can
be obtained by inspecting patterns and peculiarities in the fitted calibration parameters, serve to inform
the design of NWP systems. This has the potential to provide a wealth of new and fruitful feedback on
the performance of the raw IFS output, and thus will aid ongoing as well as future model development.

19While the details of the schedule will depend on the pace and timing of change in the IFS and statistical postprocessing
efforts, a reassessment at the order of every five years seems appropriate and useful.

20Given its simplicity of implementation, the ensemble copula coupling (ECC) technique can serve as a benchmark, and
potentially as an initial solution, in the consideration of dependencies in combined events and spatio-temporal weather trajecto-
ries. For example, ECC can be used to construct physically realistic plumes from calibrated EPSgrams, as alluded to in Section
3 and described in detail by Schefzik, Thorarinsdottir and Gneiting (2013). In a nutshell, ECC restores the raw ensemble’s
multivariate rank dependence structure. Viewing the ECMWF’s IFS as a 52-member ensemble, ECC can be realized by sam-
pling M ≤ 52 equally spaced quantiles (13) of the univariate postprocessed cumulative distribution functions, and rearranging
these values according to the rank dependence structure in a collection of M raw ensemble members. If exemplary future
spatio-temporal weather trajectories are to be identified, clustering techniques such as those developed by Ferranti and Corti
(2011) can be applied to the postprocessed ensemble member scenarios.
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Concluding remarks In closing, a relevant question is that for any risks of ensemble calibration. If
inappropriate postprocessing techniques or insufficient training data are used, then indeed statistical post-
processing can deterioriate the forecast skill. Furthermore, leveraging potentially improved observational
assets, advancements in the data assimilation cycle, model and ensemble designs, numerical techniques
and computing power, the skill of raw NWP ensemble output is expected to increase, whence at some
future stage the need for statistical postprocessing might become less pronounced, despite the enormous
current benefits. To address these concerns, it is recommended that operational postprocessing and re-
forecast efforts be reviewed periodically, as noted.

Another potential concern is the univariate character of the majority of postprocessing techniques cur-
rently in use. As discussed in Section 3, copula methods are tailored to addressing this issue. If the
ensemble copula coupling (ECC) technique is used, the multivariate rank dependence structure of the
postprocessed ensemble is identical to that of the raw ensemble, thereby precluding degradation. Antic-
ipating future implementations of truly multivariate ensemble calibration techniques, statistical postpro-
cessing has the potential of correcting NWP model biases in terms of dependence structures, too.

While this report focuses on medium-range forecasts, the use of statistical postprocessing techniques can
assist in the transition to seamless prediction (Palmer et al. 2008), thereby addressing the short-range, the
medium-range, the extended range, and long-range or seasonal forecasts of average conditions (Palmer
et al. 2004; Molteni et al. 2011) simultaneously, using blending techniques such as those developed by
Kober et al. (2012).
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Appendix A: Calibration of hydrologic forecasts

Krzysztofowicz (2001) made a powerful case for the transition from single-valued forecasts to prob-
abilistic forecasts in hydrologic practice. In doing so, various types of predictive uncertainty need to
be addressed, including initial conditions uncertainties, meteorological forcing uncertainties, hydrologic
model parameter uncertainties, and model structural uncertainty (Ajami, Duan and Sorooshian 2007;
Bourdin, Fleming and Stull 2012), with Zappa et al. (2012) arguing that meteorological forcing uncer-
tainties are dominant, and that the full spread from uncertainty superpositions grows non-linearly.

Operational streamflow and water level forecasting systems are increasingly using precipipation forecasts
from NWP ensembles to drive hydrological models and predictions, thereby addressing meteorological
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uncertainties. Table 1 in Cloke and Pappenberger (2009) provides a gamut of examples of such systems.
To mention just a few case studies of ensemble riverine flow forecast systems of this type, Renner et
al. (2009) consider the river Rhine, Addor et al. (2011) the city of Zürich, and Alfieri, Thielen and
Pappenberger (2012) a catchment in southern Switzerland.

Hydrologic model uncertainty has been addressed by Ajami et al. (2006), Ajami, Duan and Sorooshian
(2007), Vrugt and Robinson (2007), Parrish, Moradkhani and DeChant (2011) and Rings et al. (2012),
who consider forecast ensembles for streamflow whose members rely on distinct hydrologic models. In
the study of Georgakakos et al. (2004), each such model is driven by radar observations, rather than
precipitation forecasts, thereby isolating the effects of model structural uncertainty. Duan et al. (2007)
consider model parameter as well as model structural uncertainty, by studying a nine-member ensemble,
consisting of three hydrologic models using three parameter sets each.

It seems likely that next generation ensemble streamflow prediction system will consider each of the
aforementioned types of uncertainty, possibly in Latin square designs, with initial conditions being sam-
pled, meteorological forcings being supplied by state of the art NWP ensembles, and suitable sets of
hydrologic models being used, with model parameters being sampled appropriately. Regardless of the
design of the ensemble system, the argument of Cloke and Pappenberger (2009, p. 622) applies, in that

current [ensemble] based forecasts do not result in true probabilities of flooding, as uncertainties are not treated
fully and the assumptions of some of the approaches are violated.

In particular, as in the case of NWP ensembles, hydrologic ensembles tend to be biased, and typically
they are underdisperded. Thus, some form of statistical postprocessing is required, with Thielen et
al. (2008, p. 33) summarizing community thoughts as follows:

Postprocessing routines capable of reducing or correcting the uncertainty of the hydrologic ensemble model
output were discussed as the best way forward for operational applications.

Toward this end, Hashino, Bradley and Schwartz (2007) apply a simple postprocessing technique that
applies a bias correction to each ensemble member individually, while Reggiani et al. (2009) adapt the
Bayesian approach of Krzysztofowicz (1999). Fundel and Zappa (2011) apply the extended logistic
regression approach of Wilks (2009) and explore the use of reforecast data. Bogner and Pappenberger
(2011) devise postprocessing techniques for the European Flood Awareness System (EFAS; Thielen et
al. 2009; Bartholmes et al. 2009), using vector autoregressive models with exogeneous input (VARX) for
normal quantile transformed ensemble data.

Various authors have explored the use of nonhomogeneous regression or model averaging to calibrate
hydrologic ensembles, with Ajami et al. (2006), Ajami, Duan and Sorooshian (2007), Duan et al. (2007),
Vrugt and Robinson (2007), Wood and Schaake (2008), Diks and Vrugt (2010) and Strauch et al. (2012)
investigating techniques for doing this. Recent developments include the combination of BMA and
particle filter techniques (Parrish, Moradkhani and DeChant 2012; Rings et al. 2012), which leads to
the use of flexible and adaptive, rather than fixed, types of kernels in the mixture densities that form the
predictive distributions.

In hydrologic applications, the calibration of ensemble forecasts of time trajectories that are physically
realistic and consistent across lead times is of particular importance. As discussed in Section 3, a possible
way of achieving this is by putting constraints on the calibration parameters, so that they vary smoothly
across lead times, which ensures the consistency of the postprocessed marginal predictive distributions,
and then applying the ensemble copula coupling (ECC) technique, or fitting a parametric copula model,
in order to honor the dependence structure across lead times within the time trajectories.
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Table 3: The ratio rp in (14) of the sample size that is needed to estimate the quantile of a normal population at
level p to the same accuracy as in the case of the median.

p rp

0.500 1.00
0.750 1.18
0.900 1.86
0.950 2.84
0.975 4.54
0.990 8.87
0.995 15.15

Appendix B: Sample size considerations in the estimation of extreme quan-
tiles from reforecast data

This appendix contains initial thoughts on the question for suitable sizes and uses of reforecast datasets,
motivated by the setting in Zsoter, Pappenberger and Richardson (2014), where the ECMWF reforecast
dataset is used to estimate extreme quantiles of the model climate in the context of the extreme forecast
index (EFI; Lalaurette 2003).

To set the stage, let X1, . . . ,Xn be independent identically distributed random variables from a distribution
with a strictly positive probability density function, f . For a positive integer n and any fixed value of
p∈ (0,1), we let qp denote the true theoretical quantile of f , and we write X([np]) for the respective sample
quantile. By classical asymptotic theory, as described by Walker (1968) and the references therein, if n
is large the distribution of the sample quantile X([np]) is approximately normal with mean qp and variance

Vn,p =
1
n

p(1− p)
f 2(qp)

.

If f is unimodal and symmetric, then clearly Vn,p is minimal when p = 1
2 , and the ratio

rp =
Vn,p

Vn, 1
2

= 4 p(1− p)
f 2(q 1

2
)

f 2(qp)

can be interpreted as follows: In order to estimate the quantile qp with the same accuracy as the median,
q 1

2
, we need a sample size that is rp times larger than in the case of the median. In particular, if f is

normal then
rp = 4 p(1− p)exp(z2

p), (14)

where zp denotes the standard normal quantile at level p. Table 3 shows values of the ratio rp for p≥ 1
2 .

For example, if p = 0.99 we need a sample that is about nine times larger than in the case of the median.
If p = 0.995 we need a sample that is about 15 times larger than in the case of the median.

These results are illustrative only, in that the assumptions of Gaussianity and independence are unlikely to
hold in practice. However, the asymptotic theory extends to dependent random variables. For a detailed
discussion see Wu (2005) and the references therein.
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