Prospects for radar and lidar cloud assimilation

Marta Janisková, ECMWF

Thanks to: S. Di Michele, E. Martins, A. Beljaars, S. English, P. Lopez, P. Bauer

ECMWF Seminar on the Use of Satellite Observations in NWP 10 September 2014

CECMWF Reading, UK

Improvements in cloud parametrization

Cloud related observations and their assimilation (1)

- New possibilities for model improvement to be explored through assimilation of data related to clouds from active and passive sensors.
- Observations providing 3D-information on clouds from space-borne active instruments on board of CloudSat & CALIPSO already available and new ones, such as EarthCARE should appear in the near future.
 - Despite the major influence of clouds and precipitation on atmospheric water and energy balance, most cloud-affected observations are discarded in current data assimilation systems mainly because of:
 - discontinuous nature (in time and space) of clouds and precipitation
 - need to use linearized versions of these nonlinear processes (for variational assimilation)
 - spatial representativeness of satellite observations, especially from active instruments
 - non-Gaussian error characteristics of the cloud models

In global models :

- Operational assimilation of:
 - satellite infrared radiances in overcast conditions at ECMWF (McNally 2009)
 - microwave radiances in all sky conditions (Bauer et al. 2010, Geer et al. 2010)
- Experimental assimilation of :
 - cloud-affected infrared radiances from AIRS in 4D-Var (Chevallier et al. 2004)
 - cloud optical depth from MODIS in 4D-Var

In mesoscale models :

- Cloud analyses based on nudging technique (Macpherson et al. 1996, Lipton and Modica 1999, Bayer et al. 2000)
- Exploiting visible & infrared cloudy satellite radiances in 4D-Var

(Vukicevic et al. 2004)

(Benedetti and Janisková 2008)

Experiments with observations from cloud radar:

- 1D-Var experiments using cloud retrievals from ARM cloud radar (Janisková et al. 2002, Benedetti et al 2003, Benedetti and Janisková 2004)
- 2D-Var technique for ARM cloud radar observations combined with the ground-based precipitation measurements and GPS total column water-vapour retrievals (Lopez et al. 2010)
- Experimental assimilation of cloud fraction (considered as binary occurences) from CloudSat in limited-area 3D-Var through the use of humidity pseudo-observations derived from 1D Bayesian analysis
 (Storto and Tveter 2009)
- Experimental 1D+4D-Var assimilation of CloudSat observations where information on temperature and specific humidity retrieved from 1D-Var using cloud radar reflectivity or liquid and ice water contents used as pseudo-observations in 4D-Var

(Janisková et al. 2012)

 To study the impact of the new observations on 4D-Var analyses and subsequent forecasts, a 1D+4D-Var technique has been selected.

Methodology:

- 1D-Var + 4D-Var approach built on experience of using such technique for formally operational assimilation of precipitation related observations. (Bauer et al. 2006 a, b)
- In 2-step 1D-Var + 4D-Var approach used for cloud radar reflectivity (Janisková et al. 2012) or/and lidar backscatter:
 - 1D-Var retrieval first run on the set of observations to produce pseudo-observations of temperature *T* and specific humidity *q* (based on evaluation of *T* and *q* increments both variables are modified by the assimilation of cloud related observations),

- modified T and q profiles then assimilated in the ECMWF 4D-Var system.

CECMWF Reading, UK

1D-Var assimilation

 For a given observation y^o, 1D-Var searches for the model state x=(T,q_v) that minimizes the cost function:

$$J(\mathbf{x}) = \frac{1}{2} (\mathbf{x} - \mathbf{x}^{b})^{\mathrm{T}} \mathbf{B}^{-1} (\mathbf{x} - \mathbf{x}^{b}) + \frac{1}{2} (H(\mathbf{x}) - \mathbf{y}^{o})^{\mathrm{T}} \mathbf{R}^{-1} (H(\mathbf{x}) - \mathbf{y}^{o})$$

Background term Observation term

- **B** = background error covariance matrix
- **R** = observation and representativeness error covariance matrix
- H = nonlinear observation operator (model space \rightarrow observation space)
 - (physical parametrization schemes, radiative transfer model, reflectivity model, ...)
 - The minimization requires an estimation of the gradient of the cost function:

$$\nabla J(\mathbf{x}) = \mathbf{B}^{-1}(\mathbf{x} - \mathbf{x}^{b}) + \mathbf{H}^{\mathrm{T}}\mathbf{R}^{-1}(H(\mathbf{x}) - \mathbf{y}^{o})$$

- The operator \mathbf{H}^{T} can be obtained:
 - explicitly (Jacobian matrix)
 - using the adjoint technique

1D-Var observation operators

- Moist physics (cloud&convection schemes) simplified schemes with their adjoint versions already used in 4D-Var (Janisková and Lopez 2012)
- ZMVAR radar reflectivity operator:
 - using pre-calculated lookup table of hydrometeor optical properties (extinction and backscattering coefficients) – *Di Michele et al. 2012*
 - multiple scattering not considered for assimilation studies
- ZMVAR lidar backscatter operator:
 - operator extended to simulate the lidar signal in clouds Di Michele et al. 2013
 - simple parametrization of multiple scattering for assimilation to decrease computational cost

Frequency distribution of small-angle correction factor η across a range of temperature

CECMWF Reading, UK

IFS – Integrated Forecasting System at ECMWF ZmVar – Z (reflectivity) & backscatter model for Variational assimilation

Data selection tools

Quality control :

 excluding situations when discrepancies between observations and model equivalents are large → based on statistics of first-guess (FG) departures

Bias correction:

- Statistics based on the comparison of model FG with observations
 - → temperature and altitude used as predictors, separately over seasons and geographical regions
- Applying correction \rightarrow to obtain more Gaussian distribution of FG departures

CECMWF Reading, UK

Data selection tools

Quality control :

 excluding situations when discrepancies between observations and model equivalents are large → based on statistics of first-guess (FG) departures

Bias correction:

- Statistics based on the comparison of model FG with observations
 - → temperature and altitude used as predictors, separately over seasons and geographical regions
- Applying correction \rightarrow to obtain more Gaussian distribution of FG departures

CECMWF Reading, UK

Observation errors (1)

Observation error = instrument error + forward modelling error + representativity error

Instrument error:

CloudSat instrument random error

$$\Delta Z_{dB} = \frac{4.343}{\sqrt{M}} \left(1 + \frac{1}{SNR} \right)$$

• CALIOP instrument errors evaluated from Level-1 data (background signal power st.dev. and NoiseScaleFactor) according to Liu *et al.* (2006).

Forward modelling error:

- Approach: error expressing uncertainty in microphysical assumption
 - evaluation through differences between perturbed state and reference configuration
- Reflectivity/backscatter standard deviation expressed as percentage of the simulated radar reflectivity/backscatter separately for different ranges of temperature (*Di Michele et al. 2013*)

Observation errors (2)

Representativity error:

 Flow dependent error estimated based on statistical approach using the Structure Function Maximum (SFM) defined for different altitudes and geographical regions (Stiller 2010)

CECMWF Reading, UK

1D-Var assimilation experiments

(R)

(L)

(C)

- Assimilating different observations:
 - cloud radar reflectivity (at 94 GHz, CloudSat)
 - cloud lidar backscatter (at 532 nm, CALIPSO)
 - cloud radar reflectivity + lidar backscatter
- Observations averaged in the grid-box using:
 - full error definition
 - quality control and bias correction
- Performance of 1D-Var verified using independent observations:
 - cloud optical depth (MODIS, at 0.55 μm)
 - radar reflectivity or lidar backscatter when not assimilated
- Checking increments of system control variables (temperature *T* and specific humidity *q*)

2007012400 over Pacific

CECMWF Reading, UK

(Janisková , 2014)

1D-Var of cloud radar reflectivity

1D-Var of cloud lidar backscatter

1D-Var of cloud lidar backscatter + radar reflectivity

Increments of T and q from 1D-Var

Increments of RH (derived from T and q) from 1D-Var

CECMWF Reading, UK

Lidar and radar increments are complimentary

Improvement from assimilation of cloud radar and lidar observations

 1D-Var analysis gets closer to assimilated and also independent observations: impact of cloud radar reflectivity larger than of lidar backscatter

CECMWF Reading, UK

FG – First Guess

AN – Analysis

OBS - Observations © E

s © ECMWF 2014

Observations :

 modified profiles of T and q from 1D-Var retrievals used as pseudo-observations in 4D-Var

Observation errors :

- Observation errors for *T* and *q* pseudo-observations:
 - derived from 1D-Var analysis error covariance matrix

$$\mathbf{A} = \left[\mathbf{B}^{-1} + \mathbf{K}^T(\mathbf{x}) \ \mathbf{R}^{-1} \ \mathbf{K}(\mathbf{x}) \right]^{-1}$$

where
$$\mathbf{K} = \begin{bmatrix} \frac{\partial H(\mathbf{x})}{\partial \mathbf{x}} \end{bmatrix}$$

- or twice (2err) as large as computed

(i.e. closer to the errors for radiosonde T and q)

Experimental setup :

- assimilation cycle of 12 hours, adding the new observations to the full system of regularly assimilated observations
- 10-day forecast run from the analyses

Verification of assimilation runs against other assimilated observations

 impact of the new observations when verified against other assimilated observations in 4D-Var rather small: small, but systematic improvements coming from the lidar observations when combined with the radar

1D+4D-Var of T,q pseudo-observations - impact on subsequent forecast (1)

T, q pseudo-observations from 1D-Var of radar + lidar

RMS (FCexp – AN) – RMS (FCref – AN)

Negative values (blue colours): rms of EXP smaller than REF

1D+4D-Var of T,q pseudo-observations - impact on subsequent forecast (2)

generally, a positive impact of the new observations on the subsequent forecast:

+ even though it decreases in time, it is still noticeable up to 48-hour forecasts

+ small additional improvement when the radar and lidar observations combined

CECMWF Reading, UK

• The feasibility of assimilating space-borne radar and lidar cloud observations has been demonstrated.

The achieved results triggered the desirability to use these new types of cloud observations for assimilation.

To achieve that there are certain requirements/constraints.

Accurate enough observation operators:

CECMWF Reading, UK

Requirements for cloud radar and lidar data assimilation (2)

Linearity of physical parametrization/observation operator:

• Variational assimilation is based on the strong assumption that the analysis is performed in quasi-linear framework.

u-wind increments: fc t+12, ~700 hPa

finite difference (FD)

cloud scheme with linearity/threshold problems

Tangent-linear (TL) integration

CECMWF Reading, UK

Requirements for cloud radar and lidar data assimilation (2)

Linearity of physical parametrization/observation operator:

• Variational assimilation is based on the strong assumption that the analysis is performed in quasi-linear framework.

u-wind increments: fc t+12, ~700 hPa

finite difference (FD)

cloud scheme after solving linearity/threshold problems

Tangent-linear (TL) integration

CECMWF Reading, UK

Requirements for cloud radar and lidar data assimilation (3)

- Appropriate quality control and bias correction scheme
- Observation error definition accounting for spatial representativeness of space-borne observations

Positive values \rightarrow AN closer to OBS than FG

qcbc – quality control + bias correction **qcbcer** – qcbc + observation error improved

CECMWF Reading, UK

Perspectives

• In the future, direct 4D-Var assimilation of cloud radar/lidar observations should be considered at ECMWF.

(1D+4D-Var too expensive to be used for operational application)

 An additional beneficial activity would be a quality monitoring system against a global NWP model

(important step before any observations are assimilated into 4D-Var)

- To achieve that requires:
 - adjustments of assimilation related tools previously developed, such as quality control, data screening, bias correction and observation error definitions
- Based on experimental results, it would be highly desirable for NWP applications to have space-borne radar and lidar observations in near-real time (such as those from the future EarthCARE mission)