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Primary development goals 
 

 Unified modeling system for NWP and climate prediction in order 
to bundle knowledge and to maximize synergy effects between 
DWD and Max-Planck-Institute for Meteorology 

 Better conservation properties 
 Nonhydrostatic dynamical core for capability of seamless 

prediction 
 Scalability and efficiency on O(104+) cores 
 Flexible grid nesting in order to replace both GME (global, 20 km) 

and COSMO-EU (regional, 7 km) in the operational suite of DWD 
 Limited-area mode to achieve a unified modelling system for 

operational forecasting in the mid-term future 
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Related projects dealing with hpc aspects 
 

 

HD(CP)²  (led by MPI-M, Hamburg): 
High-definition clouds and precipitation for advancing 
climate prediction  
Goal: simulations with 100 m mesh size over (almost) the 
whole of Germany 
 
ICOMEX (led by DWD): 
ICOsahedral-grid models for EXascale earth-system 
simulations 
ICON-related subproject: DSL version of dynamical core 
Model-independent subprojects: parallel I/O, parallel 
internal postprocessing 
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 Fact: ratio between sound speed and maximum wind speed 
approaches unity when the model resolution permits breaking 
gravity waves in the upper stratosphere / mesosphere 

 Thus, split-explicit schemes such as widely used in mesoscale 
models may not be beneficial 

 Semi-implicit schemes need to avoid a limitation by the advective 
Courant number (e.g. SISL) 

 For ICON, we decided to use a HEVI (horizontally explicit – 
vertically implicit) scheme with time splitting between the 
dynamical core and tracer advection + physics parameterizations 
 

Thoughts on efficient time-stepping schemes 
in global models 
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vn,w: normal/vertical velocity component 

ρ: density 

θv: Virtual potential temperature 

K: horizontal kinetic energy 

ζ: vertical vorticity component 

π: Exner function 

blue: independent prognostic variables 

Model equations, dry dynamical core 
(see Zängl, G., D. Reinert, P. Ripodas, and M. Baldauf, 2014, QJRMS, in press) 
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• Discretization on icosahedral-triangular C-grid 

• Two-time-level predictor-corrector time stepping scheme 

• Horizontally explicit-vertically implicit scheme; larger time steps 
(default 5x) for tracer advection / horizontal diffusion / physics 
parameterizations 

• Tracer advection with 2nd-order and 3rd-order accurate finite-
volume schemes with optional positive definite or monotonous flux 
limiters; index-list based extensions for large CFL numbers; 
substepping for QV advection above ~20 km (moisture physics is 
turned off above 22.5 km) 

• No global communication except for diagnostics and I/O 

Numerical implementation 
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every ~30 min 

Reduced radiation grid 
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• Hierarchical structure of the triangular mesh is very favourable for calculating physical 
processes (e.g. radiative transfer) with different spatial resolution compared to dynamics. 

Radiation step 
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• Adjustable block length (‘nproma’) 

• Memory storage order (cells,levels,blocks), but cpp-directive based 
possibility to switch from horizontal to vertical index for inner loop 
in indirectly addressed loops 

• Option to use single precision for intermediate storage of derived 
quantities and some metric coefficients (dynamical core and 
transport scheme) 

• Combined minimization of computations on halo points and 
number of communication calls (with priority on minimizing the 
latter) 

 

Code-level efficiency optimization 
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• GME: hydrostatic operational global model, icosahedral-hexagonal 
A-grid 

• Semi-implicit leapfrog time-stepping scheme, time step limited by 
advective Courant number, iterative solver (SOR) for elliptic 
equation (thereby no global communication, but very frequent halo 
exchange) 

• NEC SX-9: ICON runs a factor of 3-4 faster than GME for 
operational domain size (20 km / 60 levels) 

• CRAY XC 30: ICON runs about a factor of 2 faster than GME (much 
faster communication network than SX-9, therefore better 
performance of GME) 

 

ICON vs. GME 
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Scaling test 

Thanks to Florian Prill! 

• Mesh size 13 km (R3B07), 90 levels, 1-day forecast (3600 time steps) 
• Full NWP physics, asynchronous output (if active) on 42 tasks 
• Range: 20–360 nodes Cray XC 30, 20 cores/node, flat MPI run 

total runtime sub-timers 

Communication 

Communication within NH-solver 

NH-solver excl. communication 

green: without output 
red:      with     output 
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Result of first try – before fixing some 
hardware issues … 

total runtime sub-timers 

Communication 

Communication within NH-solver 

NH-solver excl. communication 



Hybrid parallelization: 
4/10 threads with hyperthreading 

total runtime (no output only) 

red:       4 threads 
green: 10 threads 
dashed: reference line from flat-MPI run 

NH-solver excl. communication 

Communication within NH-solver 

Communication 

sub-timers 10 threads 

sub-timers 4 threads 



• Combined usage of hyperthreading and hybrid parallelization 
speeds up program execution by 10 – 15% 

• Nearly identical results for 4 and 10 threads when using less than 
75% of the machine, beyond that strange behaviour of 
communication times with 4 threads (does not occur with 10 km 
mesh size) 

• Should be repeated from time to time to check for hardware 
issues… 

Scaling tests on Cray XC30: important findings 
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Major upcoming challenges 
 

 Memory scaling I: remove remaining global fields used for 
computing the domain decomposition and communication 
patterns 

 Memory scaling II: minimize usage of global fields in I/O 
 Parallelization of I/O, hierarchical gather communication 
 Performance improvement of GRIB2 I/O (uses ECMWF’s GRIB API) 
 Later on: further improvement of compute scaling, e.g. by 

optimizing the domain decomposition, task placement, 
asynchronous halo communication 
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Conclusions 
 

 The computational efficiency and scalability constitute a major 
improvement over the hydrostatic GME 

 Pushing the upcoming operational configuration (13 km, L 90) to 
the scaling limit requires a bigger machine than currently 
available at DWD 

 Main issues to be solved in the near future: memory scaling, 
optimization and parallelization of I/O 

 Further improvements of computational performance and 
scalability are less urgent 
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Thank you for your attention! 
 

Any questions? 
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