The new Met Office/NERC Cloud model

Michèle Weiland and Nick Brown, EPCC - The University of Edinburgh Adrian Hill, UK Met Office

Why a new model?

- Met Office have identified that the Large Eddy Model (LEM), an in-house cloud model requires a significant technical upgrade in order to meet future parametrisation needs
- NCAS have identified that community supported cloud modelling capability in the UK is limited
 - particularly impacts observational and instrumental researchers
- MONC project funded by **JWCRP** to develop new model
 - project runs from 1st Jan 2014 to 31st August 2015

Examples of UK cloud models

- 1D/2D kinematic models e.g.
 - Kinematic Driver (KiD) model
 - Aerosol-Cloud-Precipitation Interaction Model (ACPIM)
- 2D & 3D dynamic models e.g.
 - Met Office LEM

Kinematic Driver (KiD) Model

- Simple microphysics interface to a common dynamical core
 - Developed at Met Office to facilitate consistent and constrained comparison of various microphysics codes
- KiD model highlights the usefulness of a community model
 - Used in the Met Office by Atmospheric Processes and Parametrisations (APP) and Observational Based Research (OBR)
 - Used by NCAS scientists in Leeds and Manchester University
- Although useful, the KiD model is limited as it uses prescribed flows, which are not influenced by cloud microphysics and thus lead to the inability to investigate important cloud feedbacks

JWCRP — a partnership in weather and climate research

Met Office LEM

- High-resolution 3D large eddy simulation model with various cloud microphysics schemes and the Edwards-Slingo radiation code
- A principal tool for conducting atmospheric process research in the UK
- The LEM is fundamental in the development and testing of UM parameterisations such as
 - the UM boundary layer scheme;
 - the Abel and Shipway (2007) fall-speed parameterisations;
 - the UM decoupled temperature diagnostics

Met Office LEM (2)

- The LEM is regularly used by NERC researchers numerous publications
- The LEM code has been ported to & is running on
 - IBM power 7 in the Met Office, MONSOON, ECMWF, HECToR
 - Exeter University, University of Manchester and UEA clusters/HPC
- Limitations of LEM
 - Build process and code management method archaic
 - Code structure seriously limiting domain size and/or length of simulations

Example case: cold air outbreak

(see http://appconv.metoffice.com/cold_air_outbreak/constrain_case/home.html)

- LEM simulation limited to 100 km horizontal domain with dx, dy = 250 m due to memory issues on HPC.
- 15 hour simulation took 3 weeks on 192 processors
- Higher resolution with big domain required to simulate across the grey-scale and inform NWP

LEM profiling on HECToR

Test case 3: FIRE stratocumulus

non-precipitating moist processes and interactive radiation with high vertical resolution

Cores	Speed up	Parallel efficiency
8	1	1
16	1.92	0.96
32	3.59	0.90
64	6	0.75
128	9.36	0.58
256	12.58	0.39

Strong scaling for LEM test case 3

LEM profiling on HECToR (2)

Cores	LEM	MPI	Other
8	89.8%	3.2%	7.0%
16	87.7%	5.4%	6.8%
32	85.1%	8.9%	5.9%
64	78.3%	16.5%	5.1%
128	68.4%	27.1%	4.4%
256	55.6%	41.1%	3.3%
blocking ser	nds/recvs, plu	Is barriers	EDCC Met Office JWCRP

Why use LEM as basis for new model?

- Tried and tested, involved in model inter-comparisons since 1996
 - very well understood and validated code
- Regularly used for parametrisation development and fundamental research by NERC and Met Office scientists
- NCAS and Met Office scientists have already coupled numerous microphysics schemes to the LEM
 - do not want to throw away that work

Aims of MONC

- MONC will be a very high resolution (~2 to 50 m), flexible, portable cloud modelling framework, supported and administered through collaboration between NCAS and the Met Office
- MONC will address the shortcomings of the LEM by upgrading and modernising the structure of the LEM
 - from FORTRAN 77 to Fortran 2003, from GCOM to MPI
 - modular structure
- MONC will act as a focus for Met Office/NERC cloud, convection and aerosol-cloud process research enabling effective collaboration between observation scientists and model developers

MONC architecture (2)

- The core contains the MONC entry point, registry functionality and some utility modules
- Each component is called by the core and the only interaction between component and core is through a "model state" type.
- Keeping components independent means that experimental functionality can be included at no cost to the mature, well tested, aspects.

- The LEM currently limits decomposition to one dimension, each process must hold at least two slices due to limitations in the halo swapping code and data size on each process must be equal.
 - this limits the amount of parallelism available
- MONC will support decomposition in both the x and y dimension (columns) with at least one column per process
 - number of columns can be distributed unevenly
 - improved decomposition means more parallelism to be exploited
 - asynchronous MPI

IO server

- nodes are getting "fatter", under-populating to satisfy memory needs is not uncommon
- model dumping is independent of computation
- use empty cores on a under-populated node to do useful work
 - pass work (in this case IO) to offload server
 - continue computation, while model dump is handled by IO server

Test driven development

- Using Fruit (Fortran Unit Test Framework) for unit testing
 - Framework written to automate this, generates HTML report
 - currently run manually, will eventually run automatically at check-in

MONC Unit test results

Revision number 42 (docs), run at 10/03/2014 19:54:19

Overall test run: 159/159√ GNU: 53/53√ Cray: 53/53√ Intel: 53/53√

	GNU	Cray	Intel
MONC build	Pass	Pass	Pass
<u>checkpointer</u>	<u>5/5</u>	<u>5/5</u>	<u>5/5</u>
core-collections	<u>14/14</u>	<u>14/14</u>	<u>14/14</u>
core-conversion	<u>17/17</u>	17/17	17/17
core-logging	2/2	2/2	<u>2/2</u>
core-optionsdatabase	<u>5/5</u>	<u>5/5</u>	<u>5/5</u>
core-registry	<u>6/6</u>	<u>6/6</u>	<u>6/6</u>
terminationcheck	<u>3/3</u>	<u>3/3</u>	<u>3/3</u>

3

Documentation

- auto-generated from annotated source code
 - using Doxygen
- important for a community code to be well documented
 - encourages uptake and contributions

VIUNC	
Main Page Da	ta Types List
Data Types List	nto Type Pots Fielde
bata Types List D	tu types Data rielus
tate modelstate	
state::models	Public Attributes I List of all men
The ModelState which	represents the current state of a run. More
Public Attribute	es estado est
logical	continuetimestep =.true.
logical	continueconsolidation =.true.
logical	continuemodeldump =.true.
type(map)	optionsdatabase
type(gridtype)	primalgrid
type(gridtype)	dualgrid
type(prognosticfield)	u
type(prognosticfield)	w
type(prognosticfield)	v
integer	timestep =1
Detailed Descr	iption
The ModelState which	represents the current state of a run.
This state is provided	to each callback and may be used and modified as required by the callbacks. Apart from this state, there should be no other state (global) variables declared. This allows us to simply e ModelState when suspending and reactivating MONC.
ersist and retrieve the	
hersist and retrieve the	r this type was generated from the following file:
The documentation fo MONC_svn/MC	r this type was generated from the following file: INC/trunk/core/src/state.f03

Where are we now?

- Development started March 2014, currently 8,500 lines of code
- A kinematic version of MONC with a mature core and parallel framework
 - Includes public "utility" modules such as logging, profiling, collections
- Next steps
 - IO server, diagnostics (August)
 - profile performance so far

Questions?

