

 Streamlining HPC scenarios for future NWP
 Sami.Saarinen@csc.fi (CSC – IT Center for Science Ltd, Finland)

with Deborah.Salmond@ecmwf.int (ECMWF)
April 14-15, 2014 for ECMWF Scalability workshop

mailto:Sami.Saarinen@csc.fi
mailto:Deborah.Salmond@ecmwf.int

PREVIOUSLY ON 24

Power7 - 60 Nodes

CPU
Comms
Barrier
Serial

IFS T1279L137 ~ 16km : 10-day FC : CY40R1

2258 seconds
5.1 Tflops (8.6% peak)

2182 seconds
5.2 Tflops (10.4% peak)

CRAY - 100 Nodes

CPU
Comms
Barrier
Serial

Outline of the talk

Facts

Scenarios

Streamlining

FACTS

“A thing that is known or proved to be true”

The power wall

A “Total Recall” ?

CPU clock frequencies have practically
ceased to increase about 10 years ago
– Power [W] ~ Freq3 lots of heat & €€€ (~ 1.4 $$$)
– Frequencies ~ 1 … 3 GHz (except on IBM P6 @ 4.7GHz)

However, Moore’s Law continues to be valid
– Requires increased investments in parallelism
– GPUs and many-core techniques offer a viable option

A multi-objective optimization dilemma
– Power is capped by energy consumption limits
– Yet much more computational performance is needed

Targeting T2047L137 (~10km)

ECMWF’s near future operational FC model
Sample performance data from Cray XC30 run
– 128 nodes, 24-cores/node in 2 sockets, 64GB/node
– Ivy Bridge E5-2697 v2 (2.7GHz) – TDP 130W/socket

10-day forecast : 1024 MPI x 6-way OpenMP
– Compiled with Cray CCE 8.2.2 and uses 2-way HT

Time step : 450s
Total elapsed time : 6242s (~1h 44min)
Baseline energy @ 90% TDP : 51.9 kWh

10-day T2047L137 ~ 10km
t = 6242s @ 51.9 kWh

Physics
Radiation
Dynamics
SLCOMMs
LT+FFT
Transposes
Misc

0 0
1 1
2 2

MPI# 0 1 … 2 3

0 0
1 1
2 2 O

pe
nM

P#

0 0
1 1
2 2

 4 5 … 6 7

0 0
1 1
2 2

Node#1 Node#2

 One or more MPI-tasks
per multi-core CPU node
 One or more OpenMP-
thread per MPI-task
 Primarily threads #0
communicate over MPI

IFS parallelization over MPI + OpenMP

SCENARIOS

“A written outline of a film, novel, or stage work
giving details of the plot and individual scenes”

On CPU-side CAF-scaling not too bad …
(T2047L137/RAPS12 CY37R3 on HECToR, Cray XE6)

(Courtesy George Mozdzynski, ECMWF)

0%

5%

10%

15%

20%

25%

0 10000 20000 30000 40000 50000 60000 70000

Pe
rf

or
m

an
ce

 Im
pr

ov
em

en
t

Number of Cores

Performance improvement due to CAF

0

100

200

300

400

500

600

700

0 20000 40000 60000 80000

Fo
re

ca
st

 D
ay

s
/ D

ay

Number of Cores

Scaling with and without CAF

ideal

Using GPUs with help of OpenACC

Offloaded to GPU Runs on host CPU(s)

IFS

!$acc parallel

!$acc end parallel

DAXPY with OpenMP & OpenACC

SUBROUTINE daxpy(n, a, x, y)
INTEGER :: n, j
REAL(kind=8) :: a, x(n), y(n)
!$omp parallel do
 DO j = 1,n
 y(j) = y(j) + a * x(j)
 ENDDO
!$omp end parallel do
END SUBROUTINE daxpy

! call daxpy with 128M elements
CALL daxpy(2**27, 3.14_8, x, y);

SUBROUTINE daxpy(n, a, x, y)
INTEGER :: n, j
REAL(kind=8) :: a, x(n), y(n)
!$acc parallel loop
 DO j = 1,n
 y(j) = y(j) + a * x(j)
 ENDDO
!$acc end parallel loop
END SUBROUTINE daxpy

! call daxpy with 128M elements
CALL daxpy(2**27, 3.14_8, x, y);

Tempted to go for GPUs ?

Lets perform a “back-of-an-envelope study”
– How well could IFS scale on GPUs ?
– (When) Are we going to save in our energy bill ?

Speculating with T2047L137 on CPUs+GPUs
– Physics (~29%) to GPUs target 3X speedup here
– Plus most of dynamics (~35%) with speedup of 2X
– Complete code re-write with total speedup of 3X

Assume 2 x Kepler K40 (12GB) per IvB-node
– Total 256 K40 GPUs with GDR MPI + Hyper-Q/MPS
– TDP value 235W (~70% will be used), idle ~20W

Expected power [W] profile on GPUs
 (Courtesy Martin Burtscher, TX State Univ)

Gain

Also dynamics+ : 1.58X
t = 3943s @ 55.8 kWh

Physics
Radiation
Dynamics
SLCOMMs
LT+FFT
Transposes
Misc

Runtime

Gain

Complete re-write : 3X
t = 2081s @ 41.7 kWh

Gain

Physics GPUs : 1.24X
t = 5035s @ 55.3 kWh

Physics
Radiation
Dynamics
SLCOMMs
LT+FFT
Transposes
Misc

T2047L137 ~ 10km
t = 6242s @ 51.9 kWh

Physics
Radiation
Dynamics
SLCOMMs
LT+FFT
Transposes
Misc

Energy vs. IFS speedup vs. GPU-%

Stay below
the red line

Rather
failed
effort

Huge
achievement

1.5X

2X

3X

4X

1.5X

2X

3X

4X

Allow CPUs ~ idle when on GPU regions

Total energy
usage obviously

goes down

STREAMLINING

“Make (an organization or system) more
efficient and effective by employing faster or
simpler working methods”

0 0
1 1
2 2

MPI# 0 1 … 2 3

0 0
1 1
2 2 O

pe
nM

P#

0 0
1 1
2 2

 4 5 … 6 7

0 0
1 1
2 2

N#1 N N#2

 One or more MPI-tasks
per multi-core CPU node
 One or more OpenMP-
thread per MPI-task
 Primarily threads #0
communicate over MPI

GPUs with
OpenACC

 e.g. one GPU/CPU-socket
 OpenACC controls CPU-
to-GPU comm. & comput.
 Hyper-Q/MPS allows MPI-
tasks to timeshare GPUs
 MPI messages can go
 directly between GPUs

GPU#0 GPU#1 GPU#0 GPU#1

Streamlining suggestions [1]

Look at OpenMP regions ~ OpenACC ”friendly”
– Start from physics – usually no MPI involved

Create data on GPUs and try to keep it there
– Minimize transfers between host CPUs

Optimize with CUDA – call it from OpenACC
– Use high performance CUDA-libraries

Use all allowable asynchronous operations with
OpenACC – GPUs like to “drink from a hosepipe”
– Feed GPUs with more data whilst previous computed

Streamlining suggestions [2]

Direct MPI-link between GPU-to-GPU exists
– Direct device resident data exchange between GPUs

Simplify some MPI coding on CPUs with CAF
– Caveat : depends heavily on use of Cray compiler …

Remember: energy savings eventually reachable
– When the major part of code runs on GPUs switch also to less

energy consuming CPUs – saves you some £££’s
But : without a major code restructuring and
algorithmic changes good computational
performance & energy efficiency difficult to obtain

Compiler support for accelerated
computing as of 1Q/2014

Cray Intel PGI GNU CAPS

OpenACC (GPUs) Yes No Yes 2015? Yes
OpenACC (MICs) No Yes
OpenMP 4.0 (MICs) Soon Yes No ??
CAF Yes Without

MPI
No ??

CUDA (nvcc) (Yes) (Yes) (Yes)
CUDA Fortran Yes

Acknowledgements

Prof. Martin Burtscher, Texas State University, for
exhilarating discussions & learning material on
how to calculate energy consumption
Peter Towers for providing T2047L137 data
George Mozdzynski for CAF material
Peter Messmer from nVidia for encouraging
discussions and excellent CUDA teaching
And finally Olli-Pekka Lehto & Tommi Tervo from
CSC for interpreting the power figures

Some references

Herb Sutter : ”The Free Lunch Is Over: A
Fundamental Turn Toward Concurrency in Software”
, http://www.gotw.ca , DDJ 3/2005
Martin Burtscher : “Accurate Power and Energy
Measurement on Kepler-based Tesla GPUs” ,
GTC2014, San Jose, CA
X.Lapillonne, O.Fuhrer : ”Using compiler directives
to port large scientific applications to GPUs: An
example from atmospheric science” , 2/2014
George Mozdzynski : ”IFS Optimisations for
ExaScale & Co-design” , CRESTA 3rd Collaboration
Meeting, Stockholm, 9/2012

http://www.gotw.ca/

Vocabulary
CAF = Co-Array Fortran (part of Fortran 2008)
CUDA = Compute Unified Device Architecture
GDR = GPUDirect RDMA allows exchange of
GPU-data directly between MPI-tasks
GPU = Graphics Processing Unit
Hyper-Q = Allows CUDA kernels to be processed
concurrently on the same GPU
MPS = Multi-Process Service allows sharing a
GPU between multiple MPI-tasks
RDMA = Remote Direct Memory Access
TDP = Thermal Design Power

	� Streamlining HPC scenarios for future NWP �
	PREVIOUSLY ON 24
	IFS T1279L137 ~ 16km : 10-day FC : CY40R1 �
	Outline of the talk
	Facts
	The power wall
	A “Total Recall” ?
	Targeting T2047L137 (~10km)
	Slide Number 9
	IFS parallelization over MPI + OpenMP
	SCENARIOS
	On CPU-side CAF-scaling not too bad …�(T2047L137/RAPS12 CY37R3 on HECToR, Cray XE6)�(Courtesy George Mozdzynski, ECMWF)
	Using GPUs with help of OpenACC
	DAXPY with OpenMP & OpenACC
	Tempted to go for GPUs ?
	Expected power [W] profile on GPUs� (Courtesy Martin Burtscher, TX State Univ)
	Slide Number 17
	Energy vs. IFS speedup vs. GPU-%
	Allow CPUs ~ idle when on GPU regions
	STREAMLINING
	GPUs with�OpenACC
	Streamlining suggestions [1]
	Streamlining suggestions [2]
	Compiler support for accelerated computing as of 1Q/2014
	Acknowledgements
	Some references
	Vocabulary

