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FACTS 

“A thing that is known or proved to be true” 



The power wall 



A “Total Recall” ? 

CPU clock frequencies have practically 
ceased to increase about 10 years ago 
– Power [W] ~ Freq3   lots of  heat & €€€  (~ 1.4 $$$) 
– Frequencies ~ 1 … 3 GHz   (except on IBM P6 @ 4.7GHz)  

However, Moore’s Law continues to be valid 
– Requires increased investments in parallelism 
– GPUs and many-core techniques offer a viable option 

A multi-objective optimization dilemma 
– Power is capped by energy consumption limits  
– Yet much more computational performance is needed 



Targeting T2047L137 (~10km) 

ECMWF’s near future operational FC model 
Sample performance data from Cray XC30 run 
– 128 nodes, 24-cores/node in 2 sockets, 64GB/node 
– Ivy Bridge E5-2697 v2 (2.7GHz) – TDP 130W/socket 

10-day forecast  : 1024 MPI x 6-way OpenMP 
– Compiled with Cray CCE 8.2.2 and uses 2-way HT 

Time step : 450s 
Total elapsed time : 6242s   (~1h 44min) 
Baseline energy @ 90% TDP : 51.9 kWh 
 



10-day T2047L137 ~ 10km 
t = 6242s @ 51.9 kWh 
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per multi-core CPU node 
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thread per MPI-task 
 Primarily threads #0 
communicate over MPI  

IFS parallelization over MPI + OpenMP 



SCENARIOS 

“A written outline of a film, novel, or stage work 
giving details of the plot and individual scenes” 



On CPU-side CAF-scaling not too bad … 
(T2047L137/RAPS12 CY37R3 on HECToR, Cray XE6) 

(Courtesy George Mozdzynski, ECMWF)  
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Using GPUs with help of OpenACC 

Offloaded to GPU Runs on host CPU(s) 

IFS 

!$acc parallel 

!$acc end parallel 



DAXPY with OpenMP & OpenACC 

SUBROUTINE daxpy(n, a, x, y) 
INTEGER :: n, j 
REAL(kind=8) :: a, x(n), y(n) 
!$omp parallel do 
  DO j = 1,n 
   y(j) = y(j) + a * x(j) 
  ENDDO 
!$omp end parallel do 
END SUBROUTINE daxpy 
 
! call daxpy with 128M elements 
CALL daxpy(2**27, 3.14_8, x, y); 

SUBROUTINE daxpy(n, a, x, y) 
INTEGER :: n, j 
REAL(kind=8) :: a, x(n), y(n) 
!$acc parallel loop 
  DO j = 1,n 
   y(j) = y(j) + a * x(j) 
  ENDDO 
!$acc end parallel loop 
END SUBROUTINE daxpy 
 
! call daxpy with 128M elements 
CALL daxpy(2**27, 3.14_8, x, y); 



Tempted to go for GPUs ?  

Lets perform a “back-of-an-envelope study” 
– How well could IFS scale on GPUs ? 
– (When) Are we going to save in our energy bill ? 

Speculating with T2047L137 on CPUs+GPUs 
– Physics (~29%) to GPUs  target 3X speedup here 
– Plus most of dynamics (~35%) with speedup of 2X 
– Complete code re-write with total speedup of 3X 

Assume 2 x Kepler K40 (12GB) per IvB-node 
– Total 256 K40 GPUs with GDR MPI + Hyper-Q/MPS 
– TDP value 235W  (~70% will be used), idle ~20W 



Expected power [W] profile on GPUs 
 (Courtesy Martin Burtscher, TX State Univ)  



Gain 

Also dynamics+ : 1.58X  
t = 3943s @ 55.8 kWh  
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Physics  GPUs : 1.24X  
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T2047L137 ~ 10km  
t = 6242s @ 51.9 kWh 
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Energy vs. IFS speedup vs. GPU-% 
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STREAMLINING 

“Make (an organization or system) more 
efficient and effective by employing faster or 
simpler working methods” 
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 e.g. one GPU/CPU-socket 
 OpenACC controls CPU-
to-GPU comm. & comput.  
 Hyper-Q/MPS allows MPI-
tasks to timeshare GPUs 
 MPI messages can go   
   directly between GPUs  
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Streamlining suggestions [1] 

Look at OpenMP regions ~ OpenACC ”friendly” 
– Start from physics – usually no MPI involved 

Create data on GPUs and try to keep it there 
– Minimize transfers between host CPUs 

Optimize with CUDA – call it from OpenACC 
– Use high performance CUDA-libraries 

Use all allowable asynchronous operations with 
OpenACC – GPUs like to “drink from a hosepipe” 
– Feed GPUs with more data whilst previous computed 



Streamlining suggestions [2] 

Direct MPI-link between GPU-to-GPU exists 
– Direct device resident data exchange between GPUs 

Simplify some MPI coding on CPUs with CAF 
– Caveat : depends heavily on use of Cray compiler … 

Remember: energy savings eventually reachable 
– When the major part of code runs on GPUs switch also to less 

energy consuming CPUs – saves you some £££’s 
But : without a major code restructuring and 
algorithmic changes good computational 
performance & energy efficiency difficult to obtain 



Compiler support for accelerated 
computing as of 1Q/2014 

Cray Intel PGI GNU CAPS 

OpenACC  (GPUs) Yes No Yes 2015? Yes 
OpenACC (MICs) No Yes 
OpenMP 4.0 (MICs) Soon Yes No ?? 
CAF Yes Without 

MPI 
No ?? 

CUDA  (nvcc) (Yes) (Yes) (Yes) 
CUDA Fortran Yes 
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Vocabulary 
CAF = Co-Array Fortran (part of Fortran 2008) 
CUDA = Compute Unified Device Architecture 
GDR = GPUDirect RDMA allows exchange of 
GPU-data directly between MPI-tasks 
GPU = Graphics Processing Unit 
Hyper-Q = Allows CUDA kernels to be processed 
concurrently on the same GPU 
MPS = Multi-Process Service allows sharing a 
GPU between multiple MPI-tasks 
RDMA = Remote Direct Memory Access 
TDP = Thermal Design Power  
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