

Running HARMONIE on Xeon Phi Coprocessors

Enda O'Brien Irish Centre for High-End Computing

Ireland's EU Structural Funds Programmes 2007 - 2013

Co-funded by the Irish Government and the European Union

EUROPEAN REGIONAL DEVELOPMENT FUND

OIDEACHAIS EDUCATION AGUS EOLAIOCHTA AND SCIENCE

Higher Education Authority An tÚdarás um Ard-Oideachas

Disclosure

ICHEC is grateful to Intel for supporting the porting & optimization of several applications, including HARMONIE, to Xeon Phi coprocessors.

Motivating Questions

Hypothetical:

- How much (human) effort is worth investing to obtain a 10 x performance speedup, *if available*, from hardware accelerators?
- How about **2** x speedup?
- Or 20% speedup?

Practical:

• Which provides more value: an extra compute node, or an accelerator?

Ways to use Accelerators

Offload of Main OpenMP loop Fails

cpg.F90(570): error #8545:

A variable used in an OFFLOAD region must not be of derived type with pointer or allocatable components. [YDSL]

!dir\$ omp offload target(mic)

in(ydsl,CDCONF,LDRETCFOU,LDWRTCFOU0,LDCPG_SPLIT)

That is a show-stopper.

Xeon vs. Xeon Phi: Vital Stats

	E5-2660 2.2 GHz	Xeon Phi 5110P
Cores (pre node)	20	61
Threads (per node)	40	240
Clock Freq.	2.2 GHz	1.053 GHz
Memory	64 GB/node	8 GB x 2 cards = 16 GB
Max. Stream Triad	91 GB/s	137 GB/s
Linpack	316 Gflop/s (max) 288 Gflop/s (16 GB)	720 Gflop/s
IMB PingPong latency	< 2 usec	5 - 12 usec
IMB PingPong B/w	> 4 GB/s	0.22 - 4 GB/s

Phi performance is contingent on using **all** cores or threads!

Stream Triad Performance on Xeon systems

IMB Ping-Pong 0-byte Message Latency (usec)

t[usec]	host0	host0- mic0	host0- mic1	host1	host1- mic0	host1- mic1
host0	0.36	5.24	6.40	1.96	6.43	7.05
host0- mic0	5.24	2.28	9.08	6.43	8.96	9.71
host0- mic1	6.40	9.08	2.37	7.05	9.71	10.99

IMB Ping-Pong 4-MB Message Bandwidth (MB/s)

MB/s	host0	host0- mic0	host0- mic1	host1	host1- mic0	host1- mic1
host0	4067	4923	5193	5870	4156	505
host0- mic0	4923	2020	1269	4156	3539	494
host0- mic1	5193	1269	1951	505	494	266

Test Code (Fortran)

```
!$OMP PARALLEL DO PRIVATE(i,j,k)
     do k=2,nz-1
       do j=2,ny-1
         do i=2,nx-1
            arr_out(i,j,k) = wght1*arr_in(i,j,k) + wght2*(
               arr_in(i-1,j,k) + arr_in(i+1,j,k) +
    &
               arr_in(i,j-1,k) + arr_in(i,j+1,k) +
    &
               arr in(i,j,k-1) + arr in(i,j,k+1))
    &
         enddo
        enddo
     enddo
!$OMP END PARALLEL DO
```


"Stencil test" OpenMP Performance on Phi, 1GB case

"Stencil test" OpenMP Performance on Phi, 6GB case

HARMONIE on Xeon Phi

- HARMONIE builds ~cleanly with "-openmp -mmic", runs natively on Phi
 - No source code changes (in principle)
 - Must use Intel compilers, Intel MPI
 - Must re-build zlib, hdf5, netcdf, & grib_api with "-mmic"
- Builds completed:
 - HARMONIE cycle37h1.1 and cycle38h1.1;
 - MPI-only and MPI/OpenMP
 - Host and Phi.
- Main executable from "Phi" build copied to "standard" installation
 - for use in "Forecast" phase only.
- Test case, IRELAND55: 300 x 300 x 65-point domain, 5.5 km resolution: *Memory needed: ~20GB minimum* (depends on run-time config.)

Host: 20 physical cores; 40 logical cores (with Hyperthreading)

	No HyperThreads				
MPI Processes	OMP_NUM _THREADS	<i>Total Threads</i>	Forecast Time (s)		
2	10	20	1570		
5	4	20	1445		
10	2	20	1384		
20	1	20	769		
40					

Host: 20 physical cores; 40 logical cores (with Hyperthreading)

	No HyperThreads			Usin	g HyperThre	ads
MPI Processes	OMP_NUM _THREADS	Total Threads	Forecast Time (s)	OMP_NUM _THREADS	Total Threads	Forecast Time (s)
2	10	20	1570	20	40	940
5	4	20	1445	8	40	814
10	2	20	1384	4	40	727
20	1	20	769	2	40	687
40				1	40	668

Host: 20 physical cores; 40 logical cores (with Hyperthreading)

	No HyperThreads			Usin	g HyperThre	ads
MPI Processes	OMP_NUM _THREADS	Total Threads	Forecast Time (s)	OMP_NUM _THREADS	Total Threads	Forecast Time (s)
2	10	20	1570	20	40	940
5	4	20	1445	8	40	814
10	2	20	1384	4	40	727
20	1	20	769	2	40	687
40				1	40	<mark>668</mark>

20-Thread (red) and 40 Hyperthread (yellow) Performance 1000 Run-time **MPI** processes 20 40 OMP_NUM_THREADS

MPI vs. OpenMP on Host nodes

Host: 20 physical cores; 40 logical cores (with Hyperthreading)

	No HyperThreads			Usin	g HyperThre	ads
MPI Processes	<i>OMP_NUM THREADS</i>	Total Threads	Forecast Time (s)	OMP_NUM _THREADS	Total Threads	Forecast Time (s)
2	10	20	1570	20	40	940
5	4	20	1445	8	40	814
10	2	20	1384	4	40	727
20	1	20	769	2	40	687
40				1	40	668

On Host: Use MPI in preference to OpenMP - (after using OpenMP to soak up the "HyperThreads")

MPI vs. OpenMP on MIC cards

MPI Only	192 MPI tasks (12 MICs, 16 MPI tasks/MIC)	3779s
MPI/OpenMP	12 MPI tasks (12 MICs, 16 OMP threads /task)	1448s
MPI/OpenMP	12 MPI tasks (12 MICs, 50 OMP threads/task	931s

On MICs: Use OpenMP threads in preference to MPI processes

Harmonie Scalability (Ireland 5.5km, 6-hr Forecasts) Using 8 or 12 MICs, 1 MPI task/MIC

000

X Intel® Xeon Phi™ Coprocessor Platform Status Panel

ICHEC Irish Centre for High-End Computing

Non-threaded routines dominate at large thread-counts

Transforms (% of total time)

Transforms (wall-time in s)

TRGTOL = TRansform Grid TO Latitude decomposition TRLTOM = Transform Latitude TO M (zonal) decomposition TRMTOL = TRansform M (zonal) TO Latitude decomposition TRLTOG = TRansform Latitude decomposition TO Grid

Issues

- Much performance (cores, threads) left unused because of memory limits.
- To run Harmonie efficiently on the Xeon Phi coprocessors, need a problem size big enough to scale to ~100+ threads, yet small enough to fit in < 8GB memory.
 - Next-generation 7000-series MIC processors have 16 GB memory.
- Could OMP_NUM_THREADS be increased without increasing memory usage?
 - Reduce number of "private" OMP variables?
 - Use more MPI tasks/MIC, fewer OMP-threads/MPI-task?
 - Find "optimal" KMP_STACKSIZE?
- **Symmetric mode** (HARMONIE running on both host and MIC processors simultaneously) currently "hangs" in first MPI collective.
 - Still, most promising prospect...
- Offload mode has many issues with pointers in derived data-types, which will require many source-code changes.
 - Is that even worthwhile?