
scalability issues 

S. Masson for the NEMO system team
F. Vigilant (Bull)

E. Maisonnave (CERFACS)



• NEMO scalability: State of the art & bottleneck
• “Exascale” project for NEMO
• IO performances
• Other components: Sea-Ice, AGRIF, TOP
• XeonPhi, GPU…
• Climate: coupler
• Conclusion

OUTLINE



State of the art

The “project funding” paradox : 
Always more groups and projects working or proposing to work on 
NEMO performances…

but

• Still no clear ideas of the issues related to NEMO performances
• Still no real quantifications of the bottlenecks
• Is there only one configuration profiling ?
• Sensitivity of these figures with domain size and core #?

A marketing problem?



eXaScale 
Projet for 



ORCA 2
550 MB of memory

8 CPU hours
10 Gigabytes of output 

(daily)

ORCA ¼
47 Gigabytes of memory

3500 CPU hours
120 Gigabytes of output 

(daily)

ORCA 1/12
414 Gigabytes of memory

90 000 CPU hours
1 Terabyte of output 

(daily )

Science improvements may be driven by mesh refining involving more 
and more grid points but also more and more parameters in the models.

Optimisation & Scalability are thus key to compute efficiently.

ORCA 1/36
> 1 Terabytes of memory

~4 000 000 CPU hours
> 5 Terabytes of output 

(daily)

Co-design

Contribute to the next 
generation of NEMO for 
eXaScale



Start from the basics: 
q Benchmaking, timing
q Isolate the parameters impacting NEMO scalability

q domain size (GYRE6/GYRE144, ORCA2/ORCA12)
q Use of sea-ice model
q North-pole folding 

Improve existing model at limited cost:
q Suppress all global communications (time splitting)

NO MORE SOLVER !!!
q Gather communications
q Point out sequential parts of the model
q Improve vectorisation
q MPI Communication improvement

Longer term work:
q Kernel optimization
q Hybrid MPI/OpenMP
q Intel Xeon Phi and GPU testing 

Co-design



Configuration: Ideal case – GYRE6 

q domain size 182 x 122 x 31
q scales up to subdomain size of 20x10
q point-to-point MPI communications 

explode (no more global)

Improve MPI efficiency: 
q maximize volume of data to be sent
q minimize MPI calls
q scales up to subdomain size of 7x6 

eXaScale Projet for 



Configuration: Ideal case – GYRE_24 

q domain size 722 x 482n x 31 
q scales up to subdomain size of 12x12
q scalability is improved 

Configuration: Ideal case – GYRE_48 

q domain size 1442 x 962 x 31 
q scales up to subdomain size of 22x22
q ideal scalability on the experiment 

range 

eXaScale Projet for 



IO
Output diagnostic files: based on XIOS



XIOS 
BIG output benchmark

daily mean outputs (one_file mode)

example: GYRE 144 (4322*2882*31)
30d simulation (14400 time steps): 

in red: with daily outputs (every 480 step, total: 235G)
in black: no outputs (enable = false)

8160 nemo
 + 32 xios 

=> +1.5% for IO



example: GYRE 144 (4322*2882*31)
6d simulation (2880 time steps): 

in red: with hourly outputs (every 20 step, total: 1.1T)
in black: no outputs

8160 nemo + 128 xios

3.1-3.6G/s => 10-12T/h...

8160 nemo + 512 xios

8160 nemo: + 15~20% for IO

XIOS 
HUGE output benchmark

hourly mean outputs (one_file mode)



IO

XIOS extremely efficient and convenient to output 
diagnostics 

Remaining (future) bottlenecks:

• Input files: read by each MPI subdomain ask (but with 
on-the-fly interpolation)

• Restarts files are written/read by each MPI 
subdomain 

Further development already planned for XIOS

• Input file and restart with XIOS
• Improve even more the scalability
• Optimise the usage and the size of buffers
• Allow grib format (?)



Sea-Ice

More and more expensive… 
LIM2 -> LIM3 with ice categories, active salinity
future: more complex rheology

Expected issue for scalability:
unbalance between points with/without sea-ice
solver in the sea-ice rheology

Proposed solutions for future developments
Again, start with a clear and quantitative benchmaking
asynchronous integration of ocean and sea-ice 

-> dedicated cores for sea-ice
different grid resolution of ocean and sea-ice 

-> coupling with oasis?
Replace solver by time-splitting as for the ocean



AGRIF

Again, no clear and quantitative benchmaking of AGRIF…
Impact of the interpolation between the different grids on performance and scalability?
On going work: run several nests at the same level in parallel

TOP (PISCES)

Again, no clear and quantitative benchmaking of TOP…
More computation, not so many communications…
Should help for the scalability…



OpenMP
Xeon Phi

GPU
Vector again ?

First step: add OpenMP
Ongoing work by 

CMCC (Italo Epicoco, Silvia Mocavero)
BULL (Franck Vigilant, Cyril Mazauric)

Second step: check vectorization

To go further ? H2020 “CHANCE” lead by CMCC
Parallel-in-time NEMO ?



CONCLUSION

• Need a clear and quantitative benchmaking of NEMO to sort out key 
issues.

• Co-design: a key of the success if involving HPC and NEMO experts
• Still a large scope for scalability improvement before rewriting 

everything
• Clear roadmap for the IO part.
• But need to start now to work on long term developments 

… and what about ocean-atmosphere coupling ?



• Developed by CERFACS since 1991 with CNRS since 2005 and many others
• Written in F90 and C; open source license (LGPL)
• Last OASIS3-MCT version based on MCT 
• Public domain libraries: MPI; NetCDF; LANL SCRIP
• Large community of users: ~35 climate modelling groups world-wide,rapidly growing

• Sequential weights calculation (SCRIP library)
• Parallel regridding on source or targets processes (MCT) 
• Redistribution of coupling data (MCT)

C

pe1

pe2

pe3

pe1

pe2

model1 model2

C

C

C

C

OASIS3-MCT



10 interpolations (1 coupling time step) from/to 
NICAM icosahedral grid (12Km)

Next bottleneck: 
initialisation at o(10,000)

OASIS3-MCT Success Stories

1. NICAM-NEMO
(JAMSTEC-IPSL)



OASIS3-MCT coupling between global & regional grid
● with 6 47-levels 3D fields (2 way nesting) = 287 2D fields
● at each ECHAM time step
● includes ECHAM-MPI-OM (ocean) coupling

Main results
● Efficiency: overhead = few %
● Modularity: can be coupled with CLM
(Community Land Model, as part of CESM, NCAR)

OASIS3-MCT Success Stories

2. ECHAM-COSMO
(BTU Cottbus, FU Berlin)

Conclusion: 
OASIS is scalable again, and still good for modularity


