

ECMWF Workshop on Scalability

April 14-15th, 2014, Reading UK

HPC for climate models: Lessons from IS-ENES projects

Sylvie JOUSSAUME, CNRS, Institut Pierre Simon Laplace, Coordinator of IS-ENES2

and Water Management

http://enes.org/

ENES

European Network for Earth System modelling

http://is.enes.org/

A network of European groups in climate/Earth system modelling Launched in 2001 (MOU)

Ca 50 groups from academic, public and industrial world

Main focus:

discuss strategy
to accelerate progress in
climate/Earth system modelling
and understanding

Several EU projects

ENSEMBLES, COMBINE, EUCLIPSE, EMBRACE, SPECS
PRISM, METAFOR, IS-ENES (1& 2)
Collaboration with PRACE

IS-ENES Infrastructure for ENES

FP7 European projects
IS-ENES 2009-2013
IS-ENES2 2013-2017

<u>Infrastructure</u>

Models & their environment
Model data (ESGF)
Interface with HPC ecosystem

<u>Users</u>:

Climate modelling community (Global & regional) Impact studies

Earth System modelling in Europe

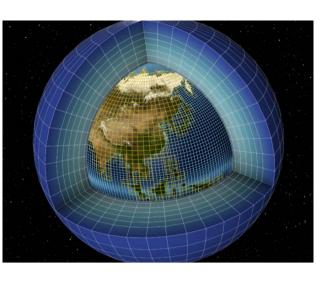
NorESM1-M
NorESM1-ME
MPI-ESM-LR
MPI-ESM-MR
MPI-ESM-P
HadCM3
HadGEM2-A
HadGEM2-CC
HadGEM2-ES
EC-EARTH
IPSL-CM5A-LR
IPSL-CM5A-MR
IPSL-CM5B-LR
CNRM-CM5
CMCC-CESM
CMCC-CM
CMCC-CMS

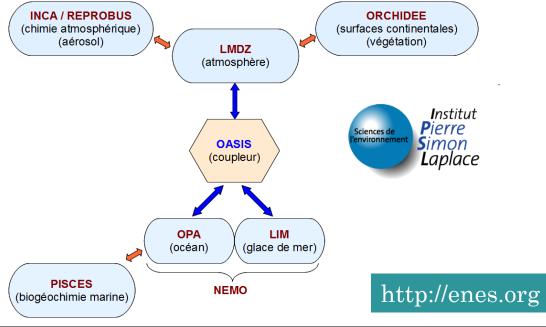
CMIP5 in Europe

7 European modelling groups
17 models

CMIP5

Evaluate/Understand/Projections


3400 simul. yrs up to > 12000 yrs 50 expts up to > 160 expts 1000 - 3000 Tbytes (CMIP3: 36)


29 modelling groups 61 models

IPCC AR5

Earth System modelling in Europe

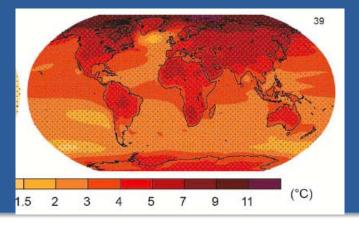
						Land		
	name of model					Surface	Atmospheric	Ocean Bio-
Country	(CMIP5)	Atmosphere	Ocean	Sea Ice	Coupler	*Vegetation	Chemistry	geochemistry
Consortium	EC-EARTH	IFS	NEMO	LIM	OASIS	HTESSEL	TM5	
France	IPSLCM5	LMDz	NEMO	LIM	OASIS	ORCHIDEE	INCA	PISCES
France	CNRM-Cerfacs	ARPEGE	NEMO	GELATO	OASIS	SURFEX		
Germany	MPI-ESM	ECHAM5	MPIOM	MPIOM	OASIS	JSBACH*	HAM	HAMOCC
Italy	C-ESM	ECHAM5	NEMO	LIM	OASIS	SILVA		PELAGOS
UK	HadGEM2	UM	UM	CICE	OASIS	TRIFFID*	UKCA	diat-HADOCC
Norway	NorESM	NCAR	MICOM	CICE	CPL7	CLM	Chemistry	HAMOCC

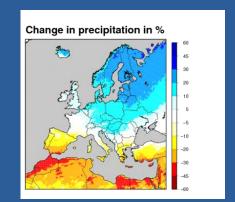
EC-Earth Con Netherlands, Sweden, Ireland, Denmark, Spain, Portugal, Italy, Belgium

IS-ENES: Infrastructure for ENES

FP7 project « Integrating Activities »

1^{rst} phase: March 2009- Feb 2013 (7.6 M€), 18 partners 2^{nd} phase: Apr 2013- March 2017 (8 M€), 23 partners


Better understand and predict climate variability & changes Foster:


- The integration of the European ESM community
- The development of ESMs and their environment
- High-end simulations
- The application of ESM simulations for climate change impacts

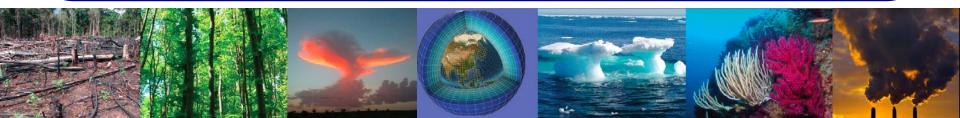
Support to international coordinated experiments for IPCC

CMIP5 7 european models

CORDEX

Euro-cordex Med-cordex Africa Cordex

Infrastructure Strategy for the European Earth System Modelling Community 2012-2022


Drivers: Science & Society

From understanding to development of "Climate Services"

Grand challenge: towards global 1 km climate models (resolve convective clouds)

Recommandations:

- 1) Access to world-class HPC for climate "tailored" up to "dedicated"
- 2) Develop the next generation of climate models
- 3) Set up data infrastructure (global and regional models) for large range of users from impact community
- 4) Improve physical network (e.g. link national archives)
- 5) Strengthen European expertise and networking

HPC for climate models

HPC facilities

Resolution, Complexity, Ensembles, Duration

Tier 1: Mainly national facilities, dedicated or general-purpose **Tier 0**: projects on PRACE

Towards an agreement with PRACE for high-end experiments for CMIP6 ENES HPC Task Force

Models and their environment Improve model performance parallel I/O, coupler, tests

Future model generation:

dynamical cores, numerics, algorithms Physics (eg radiation)

Share best practices: Workflows

Data

storage, distribution & analyses

Parallel I/O

Efficiency of post-processing: CDO

Distributed database (ESGF):

data & metadata standards, developts

http://is.enes.org/

IS-ENES HPC Workshops **Technology Tracking**

Share experience on accelerators Strengthen interactions with vendors

ENES Workshops on HPC for climate models

http://is.enes.org/

2nd Workshop Toulouse, 30/01-01/02/2013

Model performance, dynamical cores, use of PRACE EU exascale projects

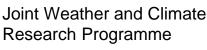
Improve model performance:

- to be driven by science
- Performance intercomparison needed : identify & share best practices
- Need interdisciplinary teams: climate and computational

Technology tracking: not convinced of GPUs

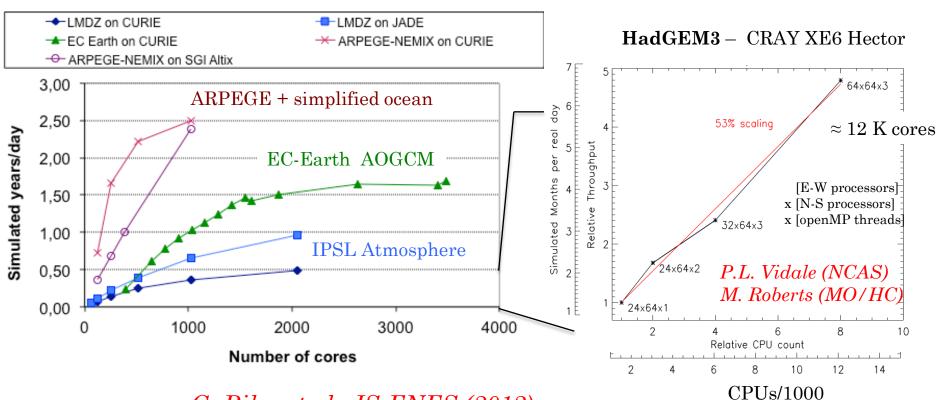
Prepare future models

- Need for new dynamical cores to enhance scalability
- Separate science from technical software ?


Data challenge: exabyte even more challenging than exaflops

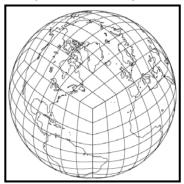
BAMS, workshop report, André et al., May 2014

Scalability issue



A partnership in climate research

Limitation of Scalability e.g. at resolution 25-30 km for the atmosphere

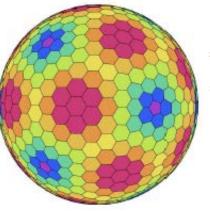

G. Riley et al., IS-ENES (2012)

Model performance: Need to revisit dynamical cores

On-going international projects:

G8 exascale project ICOMEX
Dynamical Core MIP

Cubed-sphere (CAM-SE)


Collaboration NCAR-Sandia, Dennis et al. (IJ HPC appl, 2012)

CESM1 F1850, ATM component, BGP CESM1, 0.25°, BGP CAM SE 0.25° Simulated Years/Day SE 0.25° FV 0.25° ─ EUL T340 CMIP5 0.5 CMIP3 0.25 1K 4K 16K 64K 256K NCORES

Low resolution

Aquaplanet

Europe: 3 project ICON (DE) DYNAMICO (FR) LFRIC (UK)

with full physics DYNAMICO

with full physics by the second secon

Dynamico: 32x32x10x39lvl Vs LMDZ 96x95x39

dyn DYNAMICO
dyn LMDZ

At 1/3°

28

SYPD

184 000

cores

Court. T. Dubos et Y. Meurdesoif (IPSL)

Computing performance: comparison

Real model performance: some considerations

- Productions runs may be configured for capability (minimizing time to solution or SYPD) or capacity (minimizing allocation or CHSY).
- Computing resources can be applied to resolution or complexity: what is a good measure of model complexity?
- ESM architecture governs component concurrency: need to measure load balance and coupler cost.
- Codes are memory-bound: locate bloat (memory copies by user or compiler).
- Models configured for scientific analysis bear a significant I/O load (can interfere with optimization of computational kernels). Data intensity (GB/CH) is a useful measure for designing system architecture.
- Actual SYPD tells you if you need to devote resources to system and workflow issues rather than optimizing code.

Balaji Talk

Agreed: Common diagnostics

Get in metadata

Computing performance: comparison

Balaji Talk

Model	Resolution	Cmplx.	SYPD	CHSY	Coupler	Load Imb.	I/O	MBloat	ASYPD
CM2.6 S	A0.5L32 O0.1L50 A0.5L32	18	2.2	212,465	5.71%	20%		12%	1.6
CM2.6 T	A0.5L32 O0.1L50 A0.5L32	18	1.1	177,793	1.29%	60%	24%	12%	0.4
CM2.5 T	A0.5L32 O0.25L50 A0.5L32	18	10.9	14,327	17%	0%			6.1
FLOR T	A0.5L32 O1L50 A2L48	18	17.9	5,844	0%	57%	5.1%	31%	12.8
СМ3 Т	A2L48 O1L50 A2L24	124	7.7	2.974	0.5%	41%	14.76%	3%	4.9
ESM2G S	O1L50	63	36.5	279	8.91%	1%		34%	25.2
ESM2G T	A2L24 O1L50	63	26.4	235	2.63%	22%		34%	11.4

These are very preliminary results (many thanks: Rusty Benson, Seth Underwood, Niki Zadeh!) but seem to provide a basis for analyzing results across models and platforms.

Technology tracking: accelerators

Rich Loft (NCAR): missing x 20 at 2020 for 1 km Scalability, Memory, Node performance (accelerators?)

Review by W. Sawyer

Summary, final thoughts

- Disappointment depends on your expections...
- Numerous efforts in porting to GPUs, many are demonstrative and consists of bits and pieces
- Dynamics: GPU performance mirrors increase in memory bandwidth, e.g., 2x for K20x vs. dual-socket SNB
- Physics: increased computational intensity gives larger performance benefit on GPU
- At least one model is near production status on GPU
- Acceptance of GPU paradigms by model developers is a problem

Eldgenössische Technische Hochschule Zürich

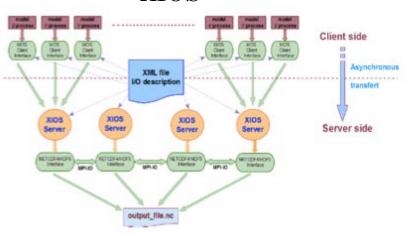
Talks on Xeon Phi

Still difficult to optimise

Order of x 2 Better with regards to energy

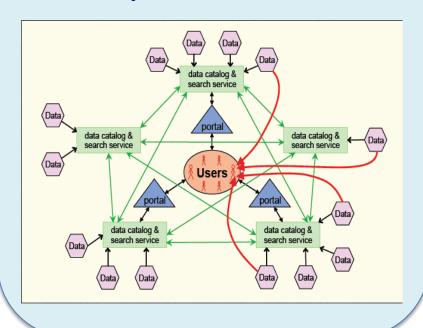
New ways of structuring codes ?

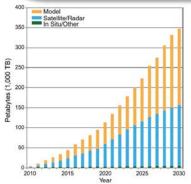
Separating
Science/
technology layers


Data issues

Data challenge:

exabyte even more challenging than exaflops


Different levels
I/O servers (XIOS, CDI-IO);
Compression; Storage;
Post-processing;
Distributed archive (ESGF)


XIOS

CMIP5 $\approx 2 \text{ to } 3 \text{ PB}$ CMIP6 $\times 30 ?$

Earth System Grid Federation

Overpeck et al. (Science 2011)

G8 ExArch project

Climate analytics on distributed exascale data archives

Europe

Strategic nature of HPC for Europe

Technology (ETP4HPC)/ HPC ecosystem (PRACE) / Applications (CoE)

Start of H2020 European Framework 2014-2020

Centers of excellence & Emerging technologies (exascale)

Climate

Launch of next international coordinated experiments CMIP6

National / Europe / International

Prepare next generation of climate models

Dynamical cores ...

H2020 opportunities for climate on HPC issues: Center of Excellence & Future and Emerging Technologies

Feb 27th 2014 meeting with DG Connect on climate and weather https://ec.europa.eu/digital-agenda/news-redirect/14942

Towards a sustained European infrastructure

