PRACE the European HPC infrastructure: World Class HPC

Services for Science

Sergio Bernardi (CINECA), PRACE Board of Directors Scalability Workshop, ECMWF, April 2014

HPC Context in Europe: a strategic tool

PRACE : THE EUROPEAN HPC RESEARCH INFRASTRUCTURE

Partnership For Advanced Computing IN Europe

PRACE: *the* European HPC Research Infrastructure

- Enabling world-class science through large scale simulations
- Providing HPC services on leading edge capability systems
- Operating as a single entity to give access to world-class supercomputers
- Attract, train and retain competences
- Lead the integration of a highly effective HPC ecosystem
- Offering its resources through a single and fair pan-European peer review process to academia and industry

ESFRI

- 6 supercomputers in 4 hosting countries, nearly 15 Pflop/s
- Common operation procedure between 35 centers in Europe
- 22 prototypes evaluated
- 169 white papers produced
- **1500** communications from our users
- 166 Thesis
- HPC Community building: **183** events
- 8 billion hours granted since 2010 (a system with 900k cores for 1 year)
- 303 scientific projects enabled from 38 countries
- More than 20 SME and industries access in first year
- 360 PATC Training days
- 2734 Trained people
- 170 applications enabled

PRACE History: An Overview of a Success Story

PRACE operations after 4 years

MareNostrum: IBM BSC Barcelona, Spain

1 PE

2 PF

FERMI: IBM BlueGene/Q

CINECA

Bologna, Italy

CURIE : Bull Bullx GENCI/CEA Bruyères-le-Châtel, France

> 15 Pflop/s provided8 BILLION CORE HOURS

awarded since 2010

JUQUEEN : IBM BlueGene/Q GAUSS/FZJ (Forschungszentrum) Jülich, Germany

SuperMUC: IBM GAUSS/LRZ (Leibniz-Rechenzentrum) Garching, Germany

HERMIT : Cray GAUSS/HLRS (High Performance Computing Center Stuttgart) Stuttgart, Germany

Scientific achievements: example

FACING THE TEMPEST A three-year advance in developing new models

→ Possibility for the UK Meteorology Office to develop worldwide high-resolution climate models (12 km)

- Largest allocation ever made on a single PRACE system
- UPSCALE Project
- Focused on tropical Atlantic storms

144 million core hours on Hermit (Germany)

Team: **Prof. Pier Luigi Vidale** (NCAS-Climate, Dept of Meteorology, Univ. of Reading and UK Met Office, Exeter, UK)

IMAGING A WHOLE SEISMIC AREA 1st numerical mapping of the North of Italy

ING

Academia

→ Estimate the effects of major earthquakes according to local geological structures, thus providing better foundations for decision-making processes

- SHAKEIT Project
- North of Italy = most active seismic area in Europe

53,4 million core hours on SuperMUC (Germany)

Team: **Dr. Andrea Morelli** – Instituto Nazionale di Geofisica e Vulcanologia, Italy

Scientific achievements: example

ASSESSING NATURAL RISKS From a 27x27 to a 3x3 km resolution

→ Creation of a database to assess flood risks due to extreme weather events all over The Netherlands

- Among the first SME granted on a PRACE system
- OASIS-ARIA-HPC Project
- Collaboration with academics within the Climate-KIC OASIS European project
- Ensemble simulation on 512 cores

6 milion core hours on CURIE (France)

USING HPC TO DISCOVER NEW THERAPIES

→ Creation of a database containing a comprehensive range of possible protein targets for every drug available

- One of the first pilot of the "Open R&D" model
- Conducted between industry and academic researchers: Dompé/University of Parma/Cineca
- Systematical investigation of protein-drug interactions through massive docking studies
- Unexpected result: a drug registered in 1981 f hypertension has an effect against prostate cancer

200 000 core hours on CURIE (France)

Team: Dompé/University of Parma Industry: SMEs

Dompé

PRACE supports international collaborations on climate

38 million (5th Call) **+ 50.44** million (7th Call) core hours on MareNostrum (Spain)

In HiResClim we use a seamless multi-model climate modelling approach, which, as well as being the most efficient way to utilise the most advanced **HPC systems of today** and improve the realism of climate simulations, is also the only path to providing robust and actionable estimates of climate changes.

Example: Earth System

Sciences

Team: Dr Colin Jones - Swedish Meterological and Hydrological Institute (SMHI) (5th Call) and **Dr. Francisco Doblas-Reyes** - Institut Catal de Cincies del Clima, Spain (7th Call)

Collaborators: Catalan Institute of Climate Sciences, Spain; Linkoping University, Sweden; CERFACS, France; the Royal Netherlands Meteorological Institute (KNMI); and the Swedish Meterological and Hydrological Institute (SMHI)

Goal: HiResClim aims to make major advances in the science of estimating climate change and formulating climate predictions . This will be achieved by addressing the dual requirements of increased climate model resolution and increased number of ensemble realizations of future climate conditions over a range of time scales and for a set of plausible socio-economic development pathways.

Blocking index (Rossby wave breaking) from four-month EC-Earth3 simulations with T255/ORCA1 (top) and T511/ORCA025 (bottom) resolution. November start dates over 1993-2009 using ERA-Interim and GLORYS initial conditions. -Copyrighted image

PRACE GOVERNANCE AND ORGANIZATION

PRACE Governance

User and communities in the governance

□ Scientific Steering Committee

- Responsible for giving opinions on all matters of a scientific and technical nature
- Proposes the members of the Access Committee
- Examples
 - Guides Peer Review Process
 - Steered Creation of Scientific Case
 - Gave advice on Programme Access, Cooperation with XSEDE, …
 - SSC Chair is member of the Board of Directors

□ Industrial Advisory Committee

• Similar role for industrial users and their requirements

User and communities in the governance (2)

□ Access committee

- Giving opinions on the scientific use of Tier-0 Infrastructure
- Providing recommendations on the allocation of PRACE resources based on the Peer Review process

User Forum

- Open to all (potential) PRACE users from academia and industry
- Main communication channel between HPC users and PRACE AISBL
- Interaction with members of the PRACE AISBL
- Discussion and issuing recommendations to PRACE AISBL
- Promoting HPC usage
- Fostering collaborations between user communities

An access model focused on the sole criterion of scientific excellence

Free at point of use, need to publish results at the end of the grant period

□ Three types of resource allocations for scientists

- Preparatory Access
 - optionally with support from PRACE experts
 - Prepare proposals for Project Access
- Project Access (every 6 months)
 - For a specific project, grant period ~ 1 year
 - For individual researchers and research groups (no restriction of nationality for both researcher and centers)
- Programme Access
 - Available to major European projects or infrastructures that can benefit from PRACE resources
 - Planned for 2 years allocation

50 or 200k CPU hours/ proposal

Peer review

□ Peer review process

- A single process for evaluating proposals
- Expert assessment
- Transparency and confidentiality
- Right to reply

Types of Access

	Preparatory	Project	Programme
Technical Assessment	Yes	Yes	Yes
Scientific Assessment	No	Yes	Yes
Mid-term Review	No	No	Potentially
Duration	6 months	12 months	24 months
Final Report	Technical	General	General

How PRACE is addressing a key challenge: Training 71 PATC courses per academic year

SYLLABUS FOR AUG.-DEC. 2012

August

27.08.-29.08. • FEM Workshop [CSC]

28.08.–30.08. • GPU Programming with CUDA and OpenACC [EPCC]

September

- 03.09.–07.09. Parallel Programming with MPI and OpenMP and Advanced Parallel Programming [GCS]
- 11.09.-13.09. Fortran 2003/2008 [CSC]
- 11.09.-14.09. MPI + MPI-IO [MdS]
- 17.09.-21.09. Advanced Fortran Topics
- 24.09.–26.09. Introduction to Parallel Programming with MPI & OpenMP [CSC]

October

- 01.10.-04.10. C/C++ Multicore Application Programming [MdS]
- 08.10.–10.10. Introduction to Parallel Programming and Message Passing Paradigm (MPI) [CINECA]
- 11.10. Introduction to OpenMP Programming [CINECA]
- 12.10. Introduction to Hybrid Programming MPI+OpenMP [CINECA]
- 16.10.-19.10. 10th VI-HPS Tuning Workshop [GCS]
- 19.10. Hybrid Programming for Material Science [CINECA]
- 24.10.–26.10. Usage of CURIE@CEA-TGCC Tier-0 Supercomputer and Related Best Practices [MdS]
- 29.10.-31.10. Advanced Parallel Programming [CSC]

November

- 05.11.-08.11. Cray XE6 Optimization Workshop [GCS]
- 12.11.–13.11. HPC Surgery: debugging, profiling and optimization of a scientific code [CINECA]
- 19.11.-21.11. Programming on GPUs [MdS]
- 20.11.–22.11. Cray Systems Workshop [EPCC]
- 26.11.-27.11. Large Scale Data Visualization with Visit [MdS]
- 26.11.–28.11. HPC Enabling of OpenFOAM for CFD Applications [CINECA]
- 26.11.-30.11. Parallel programming Workshop (BSC)

December

- 03.12.–04.12. Tools and techniques for scientific programming on BG/Q (Fermi) [CINECA]
- 04.12.-05.12. Software Carpentry [EPCC]
- 10.12.-11.12. Software Development Tools [MdS]
- 13.12.-14.12. Introduction to simulation environment for earth sciences [BSC]

PRACE AND THE COMMUNITY OF CLIMATOLOGY AND WEATHER

How PRACE presently supports the climate community

- Support to large scale international research projects
 - More than 400 million core hours for 12 projects:
 - 5% of the total number of resources and 4% of the total number of projects
 - Projects from academia and industry:
 - P.L Vidale (NCAS, UK) : High resolution global climate models applied to extreme events – 144 Mh on Hermit (HLRS@GCS) → First ever in the domain
 - ARIA Technologies (France) : risk assessment applied to extreme rainfall conditions and flooding– 6 Mh on CURIE (TGCC@GENCI)
 - Colin Jones (SMHI, Sweden): HiResClim aims to make major advances in the science of estimating climate change and formulating climate predictions – 38 Mh on MareNostrum (BSC)
 - Francisco Doblas-Reyes (Institut Catal de Cincies del Clima, Spain):
 - HiResClim second proposal 50 Mh on MareNostrum (BSC)

How PRACE presently supports the climate community

- Support to application development
 - Preparatory Access for porting and scaling out of climate apps
 - Co-development (software refactoring, development of new algorithms) PRACE-2IP WP8 « Community code scaling »
- Training
 - 6 PRACE centers (PATCs) 71 courses in 2013
 - Support to specific actions : « 2nd European Earth Systems & Climate modeling school »

FUTURE CHALLENGES AND NEXT STEPS

Technology cycle: A challenge in itself is the road to exascale and beyond

Strong issues in :

- ✓ Power consumption
- ✓ Data management
- ✓ Heterogeneity, ...

But the real challenge = How to best use these machines in the future !

The HPC European e-infrastructure: persistency, long term sustainability

- Provision of seamless and efficient Tier-0 services adapted to the needs of different user classes
- Activities that build on national Tier-1 capabilities (training, service prototyping, software development etc.)
- Governance, business models and long term financial sustainability
- Strategy for deployment of world-class HPC environment
- Infrastructure based on 50 Pflop/s systems (minimum)
- 100 M€ minimum TCO
- Openness to new user communities and new applications, and Industrial take-up of HPC services in particular by SMEs
- Work in synergy with:
 - Centres of Excellence
 - European Technology Platform for HPC by providing specs for future exascale prototypes and systems
- Training and skills development

Services/Ecosystem

- Training
- Mobility program to users
- Code porting, application enabling
- Communication, dissemination
- New types of access

PRACE

CONCLUSION

