

The impact and importance of GPS - RO in NWP

Presented by Dr. John Derber National Centers for Environmental Prediction

ECMWF/EUMETSAT ROM - SAF workshop on Applications of GPS radio occultation measurements 16 to 18 June 2014

Outline

- GPS-RO data in atmospheric data assimilation
- Uses of GPS-RO data
 - Data and System monitoring
 - Reference observations
 - Density information in GPS-RO observations
- Impact of GPS-RO observations
 - Forecast sensitivity to observations
 - OSE experiments

GPS-RO data in atmospheric data assimilation

- Data must be used carefully. Improperly used or bad data can produce large negative impacts. Important to be aware of instrument characteristics before attempting to use data.
- Raw observations vs. pre-processed observations.
- No current component of observing system is used "perfectly" or "as well as possible".
- Computational expense plays important role in design of system.

GPS radio occultation measurements & processing

GPS-RO data in atmospheric data assimilation

- Data must be used carefully. Improperly used or bad data can produce large negative impacts. Important to be aware of instrument characteristics before attempting to use data.
- Raw observations vs. pre-processed observations.
- No current component of observing system is used "perfectly" or "as well as possible".
- Computational expense plays important role in design of system.

Atmospheric Analysis Problem

- $\mathbf{J} = \mathbf{J}_{\mathbf{b}} + \mathbf{J}_{\mathbf{o}} + \dots$
- $\mathbf{J} = (\mathbf{x} \mathbf{x}_b)^{\mathrm{T}} \mathbf{B}_{\mathrm{x}}^{-1} (\mathbf{x} \mathbf{x}_b) + (\mathbf{K}(\mathbf{x}) \mathbf{O})^{\mathrm{T}} (\mathbf{E} + \mathbf{F})^{-1} (\mathbf{K}(\mathbf{x}) \mathbf{O}) + \dots$
- J = Fit to background + Fit to observations + other small terms
- x = Analysis
- **x**_b = **Background**
- $\mathbf{B}_{\mathbf{x}}$ = Background error covariance
- **K** = Forward model (nonlinear)
- **O** = **Observations**
- **E**+**F** = **R** = **Instrument error** + **Representativeness error**

Important aspects of variational DA problem

- All data used at same time.
- Forward operator (K) transforms control variables (x) into simulated observations.
 - Can include forecast model (4-D).
 - Generally more accurate implies more useful information extracted
 - Choice of forward model determines what observations to use (computational cost important)
 - If variables impacting forward model are not a part of x, then forward model error can be introduced.

Important aspects of variational DA problem

- Instrument + Representativeness error determines weight given observation
 - Off diagonal terms allows correlated instrument or representativeness error
- Choice of which data to use is important.
 - Quality control
 - Thinning or superobing
 - Availability of data
- Background error determines weight given to short term forecast
 - Background error determines how information is distributed spatially and between variables
 - Analysis variable (x) definition enters into background error and forward model
 - Background can be as good or better than observations (in terms of variance), but will have different error structure

Outline

- GPS-RO data in atmospheric data assimilation
- Uses of GPS-RO data
 - Data and System monitoring
 - Reference observations
 - Density information in GPS-RO observations
- Impact of GPS-RO observations
 - Forecast sensitivity to observations
 - OSE experiments

Data and System Monitoring

- Operational centres use the short term model forecasts compared to the observations to monitor the observations and the forecast system.
- Often the NWP centres see problems with instruments prior to notification by provider (Met Office especially).
- The data monitoring can also show problems with assimilation and forecast systems.
- Needs to be ongoing/real time.

Data and system monitoring

STATISTICS FOR RISING RO FROM COSMIC-1/GPSRO IMPACT HEIGHT =20 KM, ALL DATA [TIME STEP = 12 HOURS] Area: lon_w= 0.0, lon_e= 360.0, lat_s= -90.0, lat_n= 90.0 (over All_surfaces) EXP = 0001 (LAST TIME WINDOW: 2014060821)

FOR ENVIROUM

ECMWF

NCEP

Reference observations

- GPS-RO observations are high quality, reliable, and not very instrument dependent
- Other data (e.g., Satellite radiances, radiosondes) often require bias correction due to errors in instrument characterization and forward modelling.
- Since there is not much other reliable data available high in the atmosphere, the GPS-RO data can serve as reference observations (see prior presentation by J. Eyre)

Reference observations

Density information in GPS-RO observations

- Distribution to temperature and moisture determined by background error covariances and forward model
- Impact discussed below

Outline

- GPS-RO data in atmospheric data assimilation
- Uses of GPS-RO data
 - Data and System monitoring
 - Reference observations
 - Density information in GPS-RO observations
- Impact of GPS-RO observations
 - Forecast sensitivity to observations
 - OSE experiments

Impact of GPS-RO observations

- Includes both density information and reference observation signal (not monitoring)
- Analysis/forecast diagnostics (e.g. DFS, FER)
 Impact of redundancies in observing system
- Observing System Experiments
 - All impacts dependent on assimilation system
 - Similar results from most operational systems

Forecast Error Reduction

Forecast Error Reduction

OSE – anomaly correlation

500 hPa Anomaly Correlations 15 Aug – 30 Sep 2010 Jung and Riishojgaard

No GPS-RO / No AMV 15 Aug -30 Sep 2010 Jung and Riishojgaard

Final Comments

- GPS-RO observations do have a positive impact on NWP, but not overwhelming
- The data is important for it's direct impact on model skill, as a reference data set for bias correction and for monitoring purposes
- Largest impact is in upper troposphere and lower stratosphere
- Through improved data assimilation techniques more information can be extracted from the observations