Improved understanding of the global tropopause from GPS observations

Bill Randel Atmospheric Chemistry Division, NCAR

<u>Climate-relevant processes linked to the global tropopause</u>

transport to the stratosphere;

Global tropopause and GPS data:

- GPS measurements provide an optimum tropopause sensor
 - * accuracy, high vertical resolution and global coverage
- New insights into tropopause structure and variability:
 - tropopause inversion layer (linked to dynamics/radiative effects of UT water vapor)
 - double tropopauses in subtropics (intrusions into lower strat.)
 - tropical tropopause (variability, and links to clouds and water vapor)
- Additional topics:
 - tropopause height trends (Schmidt et al, 2009)
 - widening of the tropics (Seidel et al, 2008; Davis and Birner, 2013)
 - ExTL mixing layer (e.g. Hegglin et al, 2009)
 - chemicals, isotopes, effects of deep convection, ...

Double tropopauses

Not exactly new: Bjerknes and Palmen (1937), ...

<u>Many studies with GPS data</u>: Schmidt et al, 2006, Randel et al 2007, Pan et al 2009, Castanheira et al 2010, Son et al, 2011, Peevy et al , 2012, ...

Climatology from GPS Schmidt et al 2006

Satellite ozone measurements from HIRDLS

Pan et al, 2009

What controls variability of the cold-point tropopause?

- Convection?
- Dynamically-forced upwelling?

Using GPS data to understand variability of tropical temperature:

- Construct a global, <u>zonal average</u> data set from all GPS observations (CHAMP, COSMIC, METOPA, others; > 6,200,000 occultations)
- 5-day (pentad) averages for 2001-2013 (over 12 complete years)

Number of obs / pentad for 10° N-S

Choose to analyze zonal averages because they are governed by a relatively simple equation:

Tropical variability for 10° N-S

'raw' time series

remove seasonal cycle

Year

deseasonalized

T(K)

remove QBO and ENSO ('residual' variability)

10 - _____

0.5

1.0

1.5

EOF analysis of residuals

Near-tropopause signal

anti-correlation with tropical troposphere

Near-tropopause signal: correlation maps

Time series of tropical temperature anomalies

Spectrum analysis

See Virts and Wallace, 2014

Links to tropical upwelling

$$\frac{\partial \overline{T}}{\partial t} + \overline{w}^* S = -\alpha (\overline{T} - \overline{T}_e)$$

 w_m^* momentum balance w_Q^* thermodynamic balance

Abalos et al, 2014, JAS

Simplified thermodynamic balance:

harmonic expansion

Spectrum analysis

$$\sqrt{\frac{T_{\sigma}^2}{w_{\sigma}^2}} = \frac{S}{\sqrt{\alpha^2 + \sigma^2}}$$

long damping time scales (~30 days) in lower stratosphere

- Lower stratosphere temps especially sensitive to low frequency forcing
- Cause of enhanced annual cycle and large T variance in lower stratosphere

Key points:

- Novel high vertical resolution temperature record from GPS
- Strong, coherent QBO, ENSO, SSW and MJO signals in GPS data
- 2 modes of stratospheric variability: deep, shallow branches of BDC
- Cold point T variability tied to tropopause-level upwelling; anti-correlated with upper troposphere T
- Lower stratosphere T most sensitive to low frequency forcing

GPS EOF patterns

Plumb (2002); also Birner and Bonish, 2011

Linear trends from combined GPS record 2001-2013

Thank you

Extra slides

tropical coh² with respect to 12 km

EP flux divergence forcing of transient upwelling:

Regression of EP flux onto w_m^*

Abalos et al, 2014, JAS

Components of zonal mean temperature variance

Annual cycle in temperature

Spatial structure similar to ENSO

Analysis of lapse rate dT/dz

What is more fundamental: T or dT/dz ?

deseasonalized residuals

dT/dz variance

EOF analysis of residuals for dT/dz

- Large seasonal cycle, but difficult to isolate mechanism(s): both convection and upwelling (and EP fluxes) have seasonal cycles
- Examine deseasonalized variability

Balanced dynamical structure (Hoskins et al. 1985)

<u>Cyclonic</u>

Dynamical forcing of tropical upwelling

