Proposal for a distributed climate data store for Copernicus

Baudouin Raoult ECMWF

Requirements for the Climate Data Store (CDS)

- Be distributed
- Reuse existing systems when possible
 - ... But should not be a mere collection of heterogeneous systems:
 - The user should have a consistent view of all data and services available through the CDS

Slide 4

Slide 5

Slide 6

Slide 7

Slide 13

Climate Data Store

- Adaptors are not limited to data provision
 - One can later build services (i.e. creation of on-demand derived products)
 - The will contribute to the "CCCS toolbox"
 - As for data, services are invoked by the broker
- ECMWF can host new services when no infrastructure exists

Conclusion

- The proposed architecture for the Climate Data Store (CDS) fulfils the two main requirements:
 - Be distributed
 - Reuse existing infrastructure when possible
- The CDS will ensure interoperability with other frameworks
 - WMO Information System (WIS) ECMWF is a certified WIS-DCPC
 - WMO Global Framework for Climate Services (WMO GFCS)
 - INSPIRE, GEOSS...
- Next step:
 - Review existing systems/software/EU projects that are relevant to the CDS
 - Perform a GAP analysis, with focus on operations
 - Develop/procure the missing parts

