Wind analyst or site engineer:

expert on wind climates with no much interest on climate

(unknown source)

Climate Service working on Wind Energy:

specialists in <mark>climates</mark> and also wind, who lack understanding about the notion of "site"

(another unknown source)

What do users expect from CCCS Renewable Energies (Wind & Solar)

Gil Lizcano

Vortex R&D Team @ 2nd ECMWF Climate Change Service Workshop June 2014

→ What do they do?

→ What would they like to do?

VORTEX

JROPEAN WIND ENERGY ASSOCIATION

SOURCE: EWEA, http://www.ewea.org/wind-energy-basics/facts/

VORTEX 💽

EUROPE'S ELECTRICITY SUPPLY

SOURCE: EWEA, http://www.ewea.org/wind-energy-basics/facts/

SOURCE: Data from <u>The Wind Power</u>, <u>GWEC</u> and <u>Wikipedia</u>. Design by <u>Breeze</u>. http://www.breezesystem.com/resources/evolution-of-wind-power/

SOURCE: Data from <u>The Wind Power</u>, <u>GWEC</u> and <u>Wikipedia</u>. Design by <u>Breeze</u>. http://www.breezesystem.com/resources/evolution-of-wind-power/

→ @ClimateServices: better information

→ @Industry: #Global Market

→ #Information & Technology

@EWEA EVENT 2014 Conference, Resource Assessment Sessions

- Power curves in the real world: Are we achieving what's on the tin?
- The model chain: Can we improve?
- Optimising measurement strategies to maximise project value:
- Wind turbine noise: A limiting factor of the deployment of onshore wind turbines in Europe?
- Reanalysis data: A viable alternative to conventional ground based measurements?
- Wakes: Do we need different models for onshore and offshore wind farms?
- Wind speed predictions: Are we at the limit of our knowledge or can we improve?
- Forecasting: Are they being integrated into the business processes?
- Remote sensing devices: Toys or tools?

Who

Who

Post-Construction

Feasibility Assess average and percentiles of project production

RETROSPECTIVE tools

(reanalysis and derived products) Return on investment (INDUSTRY) Maximize benefits according to market demand and O&M (OWNERS) Inject and balance the energy in the grid (TSO)

FORECASTING tools (mostly short term)

\star	Project Developers
	 Iberdrola, Next Era, E-ON, DONG, Suzlon
\star	Manufacturers
	 Alstom, Vestas, Enercon, Siemens, GE, Sinovel, Goldwind
\star	Consultancies
	• DNV-GL, Natural Power, Sgurr, Hatch, Ecofys, Mott-MacD
\star	Information Services (middleware)
	• Vortex
\star	Institutions/Academy
	• World Bank/ESMAP, IRENA, DTU, ForWind, NREL
\star	TSO
\star	Finance/Insurance

About Vortex

- Vortex is wind conditions & resources global modeling engine
- Facilitate access to complex atmospheric modeling chain
- Working on-demand
- Our core is mesoscale atmospheric model WRF
- Our sources are Re-Analysis families
- about 40.000.000 km2 of complete screening resource maps
- over 50,000 year of virtual hourly times series of wind information
- We are not a consultancy but a wind resource information service
- We do not charge engineering hours but CPU hours

Who

ortex Olishore : Gli Lizcano		Preterences	Logout Support	Powered by VURIEX lerms of use
rojects New Runs		Upload KML/	View in Google Earth	Map options Search Map
🍃 Recently used runs (10 Runs) 🛛 💮 🛱		aller		
36515 United Kingdom 🎲	m/s		Grenterd	
35855 🖲 Pozo Almonte 🛛 🖌 🖌	9.0		A BLOG	Qinland
35834 🖲 Inova BA 🛛 🖌 🖌				Sweden +
35833 SL02-01 🗸 🗸				2 69
35832 SL01-01 🗸	8.0	Canada		
35018 idaho 🖌 🗸				Poland Permany Wkraine
34936 🖲 LU-P-0104, 27737 Abad 🌮 🛛 🧹	7.0	Q CONT		
34550 🖲 Baldy, Belize 🖌 🖌	rth ific	lited States	North	
33647 🖲 Sj Piauí - y10 🧹 🖌	Pan		Atlantic Ocean	
33665 🖲 Coremas - 10y 🧹	6.0	V. O		Argano Cobya Carro Saudh
👌 creyab (1 Runs) 🛛 📴 🕞	50	Charles and	venezieta	Mail Niger Stiden Circl Nigera Ethopia
36515 United Kingdom 🌼	5.0	Colorit	A A A A A A A A A A A A A A A A A A A	ADR Congo Kenya
🎽 solar (12 Runs) 🛛 🍢 🔂	4.0	Part	Brazil R	Arigola
35855 Pozo Almonte 🗸 🗸	South	Signature 1	s	outh Namibia Madagascar
35834 🖲 Inova BA 🛛 🗸 🗸	Pacific		At 0	lantic cean
35833 SL02-01 🗸	3.0		Argentina	Ainca
35832 🖲 SL01-01 🧪	Google 2000 km			

Pre-Construction

- ★ Pre-screening resource information ~ 1km
- ★ Site-analysis ~ 100m
- ★ Long-term references
- ★ Extremes conditions: Vref (50y), Icing, Dust
- ★ Metocean: wave topology

Post-Construction

- Intraday and day-ahead Resource & Power forecast
 - Project by project
 - Porto-folio (combo solar-wind)
- Other forecasts (lighting, icing ...)
- SS2S Forecasts
- Near-Term Forecast & Climate Change

What

When

Source: Vortex internal validation Over 200 certified windmasts (**155** employed) One full annual cycle cross-validations Observed against Modeled Re-analysis and 3Km WRF downscaling

R ^{2 Monthly}	10th pctl	25th pctl	Median	75th pctl	90th pctl
CFS + WRF	0.73	0.82	0.89	0.94	0.96
CFS	0.43	0.66	0.82	0.90	0.95
MERRA +WRF	0.74	0.80	0.88	0.94	0.96
MERRA	0.54	0.71	0.86	0.93	0.97
ERAI + WRF	0.75	0.82	0.89	0.94	0.97
ERAI	0.58	0.72	0.83	0.91	0.95

Source: Vortex internal validation Over 200 certified windmasts (**155** employed) One full annual cycle cross-validations Observed against Modeled Re-analysis and 3Km WRF downscaling

R ^{2 Monthly}	10th pctl	25th pctl	Median	75th petl	90th peti
CFS + WRF	0.73	0.82	0.89	0.94	0.96
CFS	0.43	0.66	0.82	0.90	0.95
MERRA +WRF	0.74	0.80	0.88	0.94	0.96
MERRA	0.54	0.71	0.86	0.93	0.97
ERAI + WRF	0.75	0.82	0.89	0.94	0.97
ERAI	0.58	0.72	0.83	0.91	0.95

Scatter plot, Monthly R² Drivers vs Meso (WRF 3KM), 12 months period

Scatter plot, Monthly R² Drivers vs Meso (WRF 3KM), 12 months period

Main Issues

Re-Analysis users perspective

Lack of resolution to resolve wind conditions

- Daily cycle
- Near-shore conditions
- Extremes

.

. . .

- Directional bias
- Atmospheric stability
- Jets, gravity waves

Time Consistence

- COMBO: Multi-source observed data, data mining and a global/mesoscale model

How strongly is the variability constrained by observations? Does the observing system drive part of the detected variability and the changes over the years?

Time Consistency

RAOB counts @ MERRA Resolution 1995

RAOB counts @ MERRA Resolution 2005

Time Consistency

Sensitivity Studies: data assimilation variational methods

Inspect inside the data: Innovation Statistics

Inhomogeneity and structural changes tests

scaled 12-month moving average speed module

O-F RAOB U-Wind

- → Reliable climate representativity
- → Allowing downscaling through mesoscale models and wind industry softwares
- → Wide community of users and experts
- \rightarrow Free, fast and easy to access
- Uncertainty quantification
 - Time consistency concern
 - Usage of model data (gridded observations)

Saturation: Excess of information

- → Aware of existence of S2D predictions
- → Interest on inter-decadal variability (last 20-years vs next 20-years)
- → Interest in solutions from Sub-seasonal to seasonal
 - O&M
 - TSO

★ ★

- Extreme events (icing, ...)
- Low interest from energy traders
- Experimental skill, larger uncertainty
 - Not clear perspective on climate change impact on resource
- How sharp are the predictions?

Partitioning Wind Climate Uncertainty *

* For inspirational work see Hawkings & Sutton, BAMS, 2009 DOI:10.1175/2009BAMS2607.1