

DWD Applications on Cray XC30 and Beyond

Elisabeth Krenzien (Technical Infrastructure)

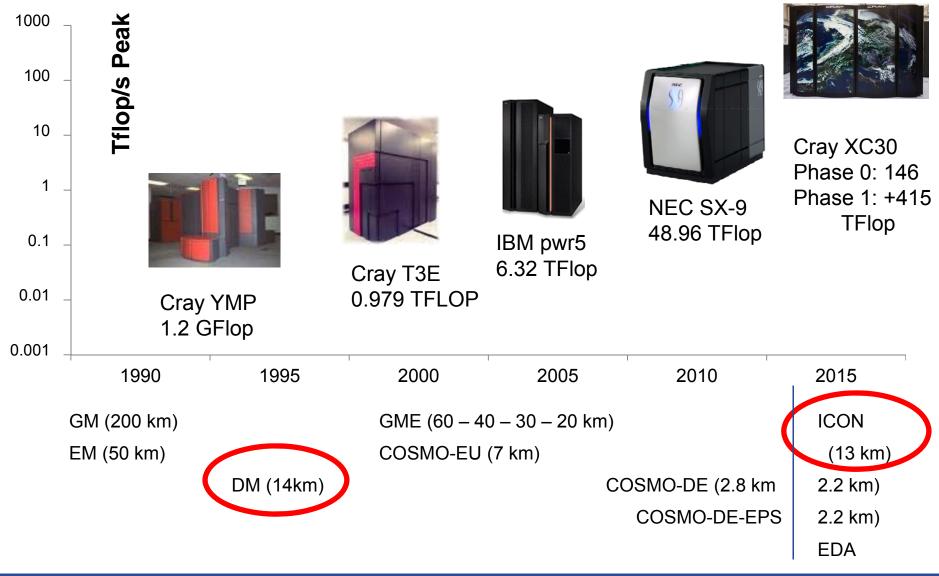
<u>Ulrich Schättler (Numerical Modeling, COSMO)</u>

Florian Prill (Numerical Modeling, ICON)

Harald Anlauf (Data Assimilation)

Contents

- → Result from last procurement: DWD's Cray XC30
- Scalability of the COSMO-Model
- Scalability of ICON
- → (Ensemble) Data Assimilation
- → And Beyond



The new Cray XC30 at DWD

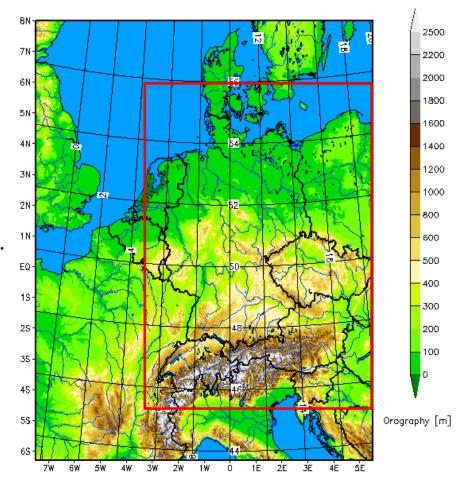
Dec. 2012: Decision on new System

Configuration Overview

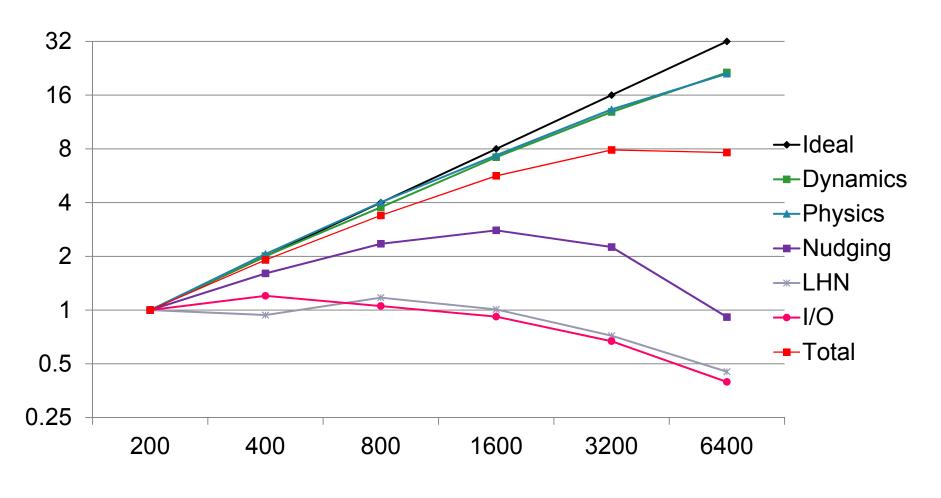
Components per cluster	Phase 0	Phase 1	
Cray Cascade LC cabinets / chassis / blades	2/6/96	5 / 13 / 208	
Compute blades (IvyBridge / Haswell)	91 / -	91 / 108	
Compute nodes (IvyBridge / Haswell)	364 / -	364 / 432	
Cores (IvyBridge / Haswell)	7280 / -	7280 / 10368	
Memory per node (GB) (IvyBridge / Haswell)	64 / -	64 / 128	
Memory total (TB) (IvyBridge / Haswell)	22.8 / -	22.8 / 54.0	
Performance peak (TF) (IvyBridge / Haswell)	146 / -	146 / 415	
Power consumption (max.) kW	148	~ 325	
Home filesystem (Panasas) (Prod. / R&D)	98 / 165 (TiB)	98 / 165 (TiB)	
HPC filesystem (Sonexion) (Prod. / R&D)	327 / 655 (TiB)	982 / 1965 (TiB)	
Starting	Dec. 2013	Dec. 2014	

Migration Work

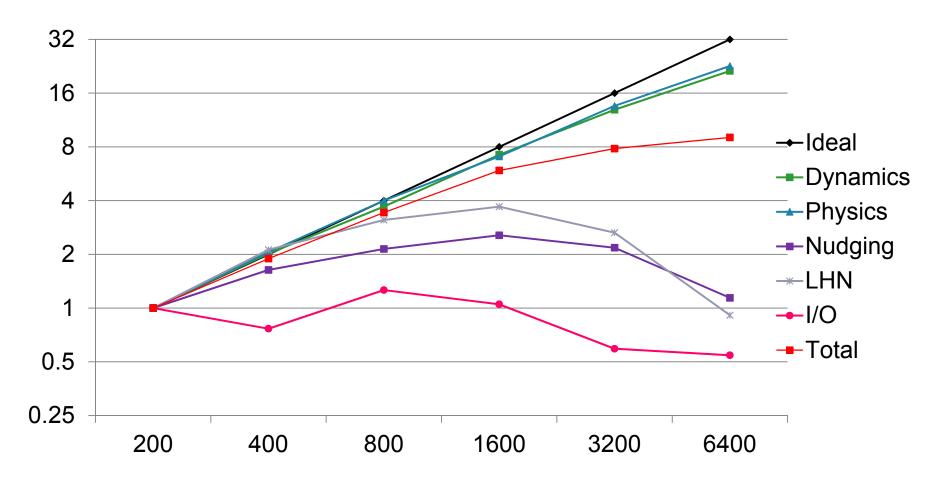
- Challenges of the porting:
 - → Architecture: vector computer ⇒ scalar MPP.
 - → Parallelism: 480 ⇒ ca. 18.000 cores.
- → Nevertheless, the models could be migrated to the new XC30 system successfully in about 3 months.
- But with some problems and (painful) experiences:
 - compiler (Fortran 90/95 implementation; optimization; vectorization; memory management), RMA, huge pages.
 - → batch system: suspend-resume, memory management.
 - → parallel & heterogeneous file system: Panasas / Lustre: stability problems.
- → Challenges of Phase 1:
 - → heterogeneous CPUs: Ivy-Bridge (10 core) and Haswell (12 core).
 - → implement the operational chain, and the numerical experimentation system.


Scalability of the COSMO-Model

The new COSMO-DE65


- → In 2015, DWD will upgrade the COSMO-DE to a larger domain and 65 vertical levels: 651 × 716 × 65 grid points.
- Some specialities about COSMO-DE forecast:
 - → 12 hour forecast should run
 - \rightarrow in \leq 1200 s in ensemble mode,
 - \rightarrow in \leq 400 s in deterministic mode.
 - "nudgecast" run: nudging and latent heat nudging in the first 3h.
 - → SynSat pictures every 15 minutes.
 - → amount of output data per hour: 1.6 GByte: asynchronous output is used with 4 or 5 output cores.
- How many cores are necessary?

Scalability of COSMO Components (incl. Comm.)



Scalability of COSMO Components (incl. Comm.)

Could optimize a global communication in Latent Heat Nudging

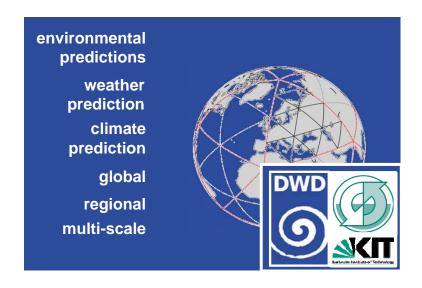
Timings for COSMO-DE65 (new)

Timings were done with COSMO-Model 5.1 (to be released in Nov. 2014)

# cores	196+4	396+4	795+5	1596+4	3196+4	6396+4
Dynamics	1848.06	908.56	474.62	240.43	132.24	77.56
Dyn. Comm.	256.83	133.92	93.56	50.69	30.82	21.23
Physics	326.42	157.02	80.12	43.44	23.20	13.68
Phy. Comm.	16.55	9.20	5.73	2.24	1.03	0.46
Nudging	26.72	15.24	10.75	7.61	6.56	9.43
LHN	16.51	8.62	5.20	4.41	6.86	20.73
Nud.+ LHN Comm.	13.22	7.74	7.36	7.55	10.82	23.98
Add. Comp.	754.63	416.42	223.49	111.80	56.37	34.75
Input	36.30	66.27	31.99	38.22	74.47	52.87
Output	33.92	25.38	23.69	28.66	44.20	76.21
Total	3355.67	1772.82	978.67	568.88	428.91	371.35

Comments

- → Scalability of COSMO for COSMO-DE65 domain size is reasonably well up to 1600 cores. Dynamics and Physics also scale beyond up to 6400 cores.
- → Meeting the operational requirements:
 - → Deterministic mode: using nearly the full Phase 0 machine, it is (now) possible to run COSMO-DE65 in less than 400 seconds.
 - → Ensemble mode: The ensembles are running without synthetic satellite images. Using 440 cores, a 12 hour forecast can be done in about 1320 seconds (1200 seconds were planned). But this is still within the tolerance limit.
- → This is mainly a problem of some expensive components!
 - → New fast-waves solver is more expensive than old one (40-50% of dynamics time; 20-25% of total time).
 - → Additional Computations: is almost only in RTTOV10:
 - → factor of about 10-15 compared to RTTOV7.
- → Tests were done on a machine "crowded as usual" and really reflect the operational setups (no tricks, no cheating, no beautifying).



Scalability of ICON

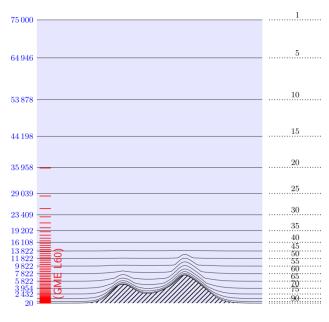
ICON: ICOsahedral Nonhydrostatic Model Deutscher Wetterdienst Wetter und Klima aus einer Hand

Future Milestones 2014-2020

- replacement of GME/COSMO-EU by ICON global model and Europe grid
- ensemble data assimilation for ICON
- ICON-EPS global ensemble system

Joint development project of DWD and Max-Planck-Institute for Meteorology

- about 40 active developers from meteorology and computer science
- ~ 600,000 lines of Fortran code


Lately joined by KIT to implement ICON-ART (environmental prediction)

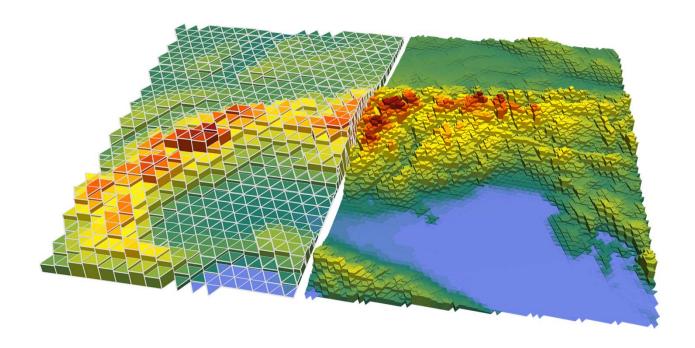
ICON to **GME** comparison

GME	ICON
hydrostatic, Arakawa A	non-hydrostatic, Arakawa C
pressure-based vertical grid, TOA 35 km	hybrid z-based, TOA ca. 75 km
flat-MPI parallelization	hybrid MPI-OpenMP
1.5 Mio. grid points/level	2.9 Mio. grid points (planned operational setup)
	~ 3.5x more output on the model grid!

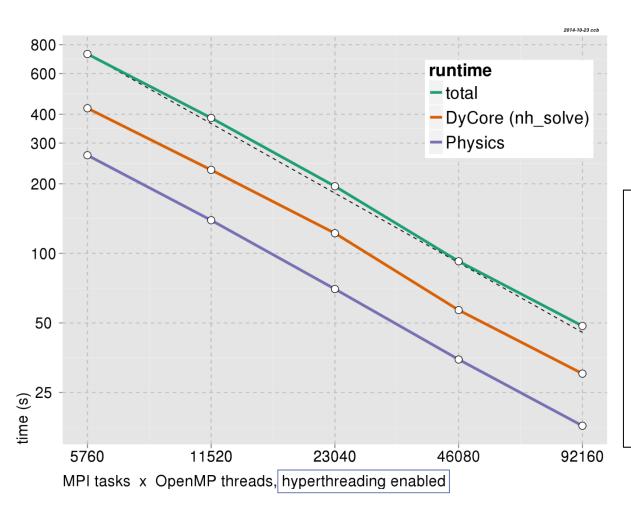
HPC challenges with the new model

5 km resolution tests at ECMWF Cray XC30 reveal possible future bottlenecks:

- memory scaling: avoid global arrays
- I/O scaling:


 NetCDF4 input files with ~125 GB data
- One-sided MPI:
 Cray-specific problems with RMA (DMAPP)
- load balancing:
 e.g. day-night load imbalance
 for radiation scheme

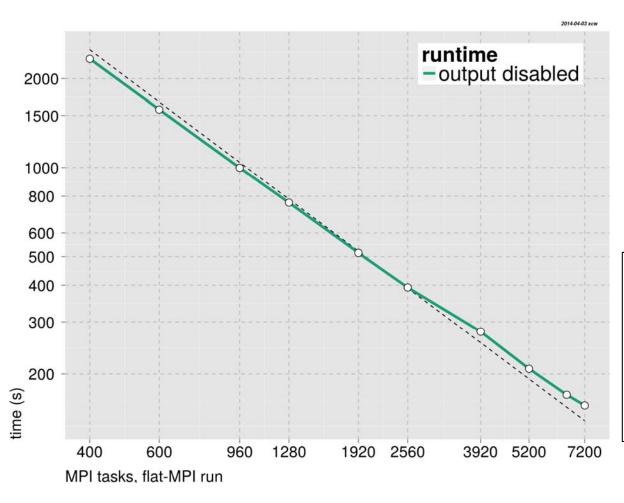
HPC challenges with the new model


"R03B07" 13 km resolution soon-to-be operational

"R02B09" scaling test (Oct `14) 5 km global resolution

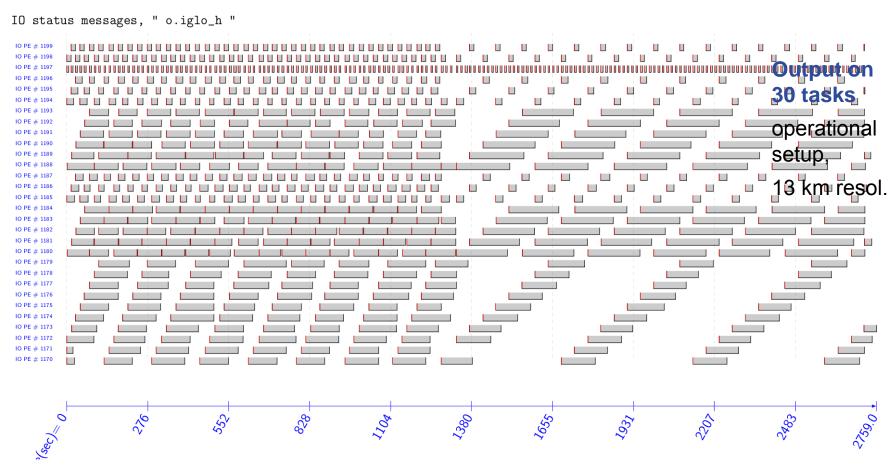
ICON Parallel Scaling on ECMWF's XC30 (,,ccb")

Real-Data Test Setup


(date: 01.06.2014)

5 km global resolution 20,971,520 grid cells hybrid run, 4 threads/task 1000 steps forecast, w/out reduced radiation grid, no output

ICON Parallel Scaling on DWD's XC30


Real-Data Test Setup

results obtained on
Phase 0 system (April '14)
13 km global resolution
24 h forecast, xcw.dwd.de,
with reduced radiation grid

ICON I/O Servers

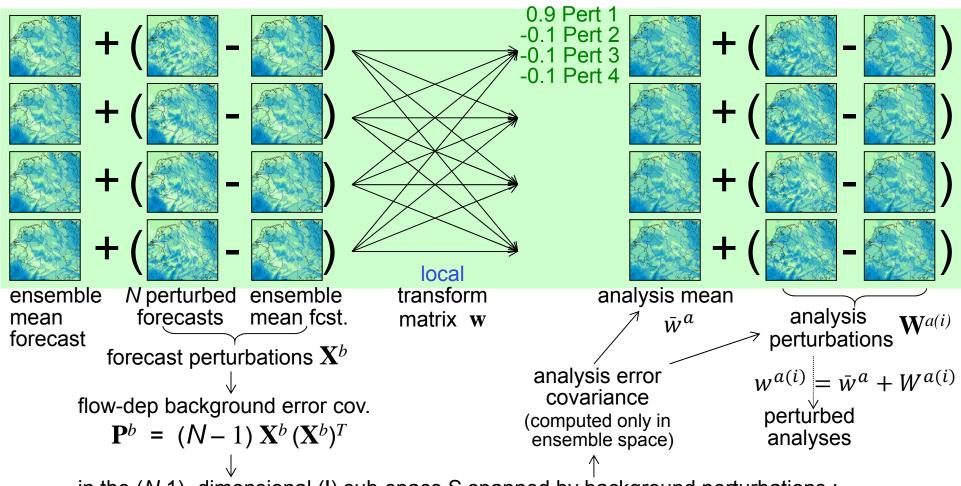
- computation and I/O overlap
- fast system layer: Climate Data Interface
- WMO GRIB2 standard (ECMWF's GRIB_API)

(Ensemble) Data Assimilation

Data Assimilation at DWD: Algorithms

- → Global deterministic Data Assimilation, for GME/ICON: Variational Analysis (3D-Var PSAS, operational)
 - → Minimization of (non-linear) cost-function
- Convective Scale:
 - → Deterministic Analysis: Nudging Scheme (operational)
 - → Km-Scale ENsemble Data Assimilation (KENDA): LETKF (Local Ensemble Transform Kalman Filter, testing)
- → Global Ensemble Data Assimilation for ICON (IEDA):
 - → LETKF (testing)
 - → VarEnKF (Hybrid Variational/LETKF system, *under development*)

Selected HPC Challenges in Data Assimilation

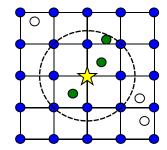


- → I/O of model fields and observational data
 - → Single-node bandwidth typically only several hundred MByte/s
 - → Aggregate bandwidth by scattering different files over nodes (most easily achievable for ensemble methods)
- → For given architecture: try to find suitable algorithm
 - → Variational data assimilation: solver needs efficient implementation of linear operators $B(x)=B \cdot x$ for high dimensions (n=108)
 - → In suitable basis (spectral or wavelet), **B** often a sparse matrix
 - → Cache-based machines: CSR & CSC storage order reasonably efficient; small improvements possible with suitable permutations (CSRPERM, CSCPERM)
 - → Vector processors (e.g. NEC-SX): Jagged Diagonal Storage order allows for longer vectors, additional optimizations (Sunil R. Tiyyagura, Uwe Küster, Stefan Borowski, ICCS '06)

Local Ensemble Transform Kalman Filter (LETKF, Hunt et al. 2007)

in the (*N*-1) -dimensional (!) sub-space S spanned by background perturbations :

 $x^{(a(i))} = \bar{x}^b + X^b w^{(a(i))}$ set up cost function $J(\mathbf{w})$ in ensemble space, explicit solution for minimisation (Hunt et al., 2007)



LETKF (km-scale) for COSMO

Summary of method: Use implementation following Hunt et al., 2007

- → Basic idea: perform analysis in the space of ensemble perturbations
 - → computationally efficient (!) in terms of operation count
 - → explicit localization: separate analysis at each grid point, using only nearby observations: local data, well parallelizable

- → analysis ensemble members are locally linear combinations of first guess ensemble members
- → Weight calculation: symmetric square-root of NxN matrix at each analysis grid point, e.g. using eigenvalue decomposition
 - → On NEC-SX, DSYEV from Mathkeisan was too slow (many bank conflicts, short vectors, few MFlop/s); RS from ancient EISPACK (iterative algorithm) already factor 5 faster; further speedup by factor 10 by vectorizing over matrix index ("loop pushing") even with additional indirect addressing. Are there better ways?
 - → LAPACK's DSYEV on cache-based machines reasonably fast

And Beyond

Up to 2018

- → The contract with Cray lasts until December 2016 (with the option to extend it up to 2 years until December 2018)
- → If we would get new hardware after 2016, what could it be?
 - → Intel based: Haswell / Broadwell
 - → other scalar CPUs: Sparc, others,...
 - → vector CPUs
- → Or even:
 - → Intel Knights Landing (?)
 - → GP GPUs (?)
- But is our software able to use Knights Landing or GPUs?

Accelerators

→ COSMO-Model

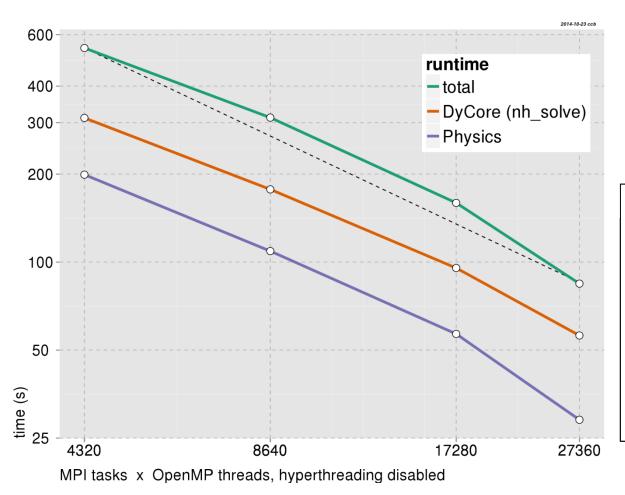
- → Much work has been invested in Switzerland (CSCS; MCH) to port the full COSMO-Model to GPUs. A prototype will be ready by the end of the year.
- → Most of the code has been ported using OpenACC directives, but:
 - → only few compilers available for OpenACC at the moment;
 - → will Intel understand OpenACC for Knights Landing?
- → The dynamics has been completely re-written by defining a meta language (DSL): STELLA (a "Stencil Library").

→ ICON

- → By mid (end) of 2015, ICON and the COSMO-Model will share the same physics packages. Most of them are then implemented using OpenACC.
- → Work on ICON dynamical core is ongoing to implement OpenACC directives (work by CSCS)


Conclusions and Outlook

- Porting DWD applications to Cray XC30 was successful.
- Phase 1 (update in progress!) will run 45 members of COSMO-DEbig ensemble: Upgrade by a factor of 3.
- → There are still a few problems with the memory management (Cray compiler) and performance of some collective operations (Cray is working on it).
- Work is going on to adapt the operational and the experimenting system to the heterogeneous Phase 1 system.
- Will OpenACC and OpenMP have a common future?
- → First experiences have been gathered in COSMO to run the model on GPUs, but we are not yet ready to use accelerators right now.
- See the presentation by our colleague Xavier Lapillonne (from Switzerland), later this week:


"Are OpenACC directives the easiest way to port Numerical Weather Prediction applications to GPUs?"

ICON Parallel Scaling on ECMWF's XC30 (,,ccb")

Real-Data Test Setup

(date: 01.06.2014)

5 km global resolution 20,971,520 grid cells hybrid run, 6 threads/task 1000 steps forecast, w/out reduced radiation grid, no output

