
Porting and Tuning WRF Physics

Packages on Intel Xeon and Xeon

Phi and NVIDIA GPU

Tom Henderson

Thomas.B.Henderson@noaa.gov

Mark Govett, James Rosinski,

Jacques Middlecoff

NOAA Global Systems Division

Indraneil Gokhale, Ashish Jha,

Ruchira Sasanka

Intel Corp.

mailto:Thomas.B.Henderson@noaa.gov

9/18/14

WRF Physics Packages

 WSM6

 Microphysics parameterization used in
WRF, NIM (NOAA), MPAS (NCAR), etc.

 Water vapor, cloud water, cloud ice, rain,
snow, graupel

 RRTMG-LW

 Longwave radiation package used in too
many NWP models to list here

 Double-precision in NIM & MPAS, single-
precision in WRF

 All results in this talk are double-precision

2

9/18/14

Approach

 Re-use WSM5 tuning for Xeon Phi already

done by John Michalakes where possible

 Re-use RRTMG-LW experience from John

Michalakes

 Diverge from John’s approach in use of

optional compile-time constants for vertical

dimension

 Use Non-Hydrostatic Icosahedral Model

(NIM) as dynamical core to test

performance improvements
3

9/18/14

Source Code Requirements

 Must maintain single source code for all
desired execution modes

 Single and multiple CPU/GPU/Xeon Phi

 Prefer Fortran + directives

 Use F2C-ACC (Govett) and commercial OpenACC
compilers for GPU

 Use OpenMP plus Intel directives for Xeon CPU
and Xeon Phi

 Use SMS (NOAA) for distributed (MPI) parallelism

 Avoid architecture-specific code
transformations

 Unless automated

4

9/18/14

Port Validation

 Good cross-architecture bitwise-exact
solutions for NIM dynamics validation

 Xeon Phi: use slow-but-exact Intel math
library to match Xeon & Xeon Phi

 NVIDIA GPU: Optionally push rare math
library calls back to CPU for testing

 Rudimentary validation for WSM6 and
RRTMG-LW thus far

5

9/18/14

What Makes “Good” Code for

Xeon and Xeon Phi?

 OpenMP threading

 Minimize threading overhead

 Vectorizable

 Fixed inner dimension

 Compile-time constants

 Build-time-adjustable length of inner
dimension

 Optimal = vector width

 Aligned memory

 Begin arrays on vector boundaries

6

9/18/14

What Makes “Good” Code for

Xeon and Xeon Phi?

 Intel compiler warns of inefficient behavior

 Loops that cannot be vectorized

 “Partial”, “peel”, and “remainder” loops

 Unaligned access

 “Gathers” and “scatters”

 Reasons for inefficiency in some cases

7

9/18/14

Code Modifications: Threading

 Add single OpenMP loop to NIM for all
“physics”
 Minimizes OpenMP overhead

 Split arrays into “chunks” with fixed inner
dimension
 Allow large chunk sizes for GPU, small for

Xeon & Xeon Phi

 Modify loops that transfer arrays between
dynamics and physics to handle “chunks”
 Very little impact on existing code

 Use Intel Inspector to find race conditions
 It really works

8

9/18/14

Code Modifications: Threading

 NIM (and MPAS) dynamics: (k,iCell)

 “k” = vertical index within a single column

 “icol” = single horizontal index over all
columns

 WRF Physics: (i,k,j)

 “i” = horizontal index over columns in a
single “chunk”

 “k” = vertical index within a single column

 “j” = index over “chunks”

 Use OpenMP to thread “j” loop

9

9/18/14

Example: Chunk Width = 4

10

Dynamics

(k,icol)

Physics

(i,k,j)

i

k

iCell

k

j=1 j=2 j=3 j=4

Replicate last column*

* Replication avoids adding “if” blocks to all physics “i” loops

“NPROMA”

9/18/14

Code Modifications:

Vectorization

 Add compiler flag for alignment

 Split/fuse loops per Intel compiler
complaints

 Add Intel compiler directives

 Alignment

 Compiler cannot always tell if memory is
aligned

 Vectorization

 Compiler cannot always tell if a loop can be
safely vectorized

 Intel added two of these missed by me

11

9/18/14

Compile-Time Constants

 Performance improves if compile-time
constants are used for memory and loop
bounds with Intel compiler

 Also benefits GPU since sizes of arrays in
GPU “shared memory” must be known at
compile time

 Stride-1 loops work best

 Use Fortran parameters or literal constants

 But, hard-coding compile-time constants is
too constraining for research codes…

12

9/18/14

Compile-Time Constants

 Add build-time option to use compile-time
constants

 Select “i” chunk size at build time (John M.)

 Select “k” vertical size at build time (new)

13

real :: y(ims:ime,kms:kme)

real :: x(kms:kme)

do k=kts,kte

do i=its,ite

real :: y(1:8,1:32)

real :: x(1:32)

do k=1,32

do i=1,8

 Optional + automatic = very flexible
 Many good ways to do this…

 Constant “k” allows simplification of WSM5
code

9/18/14

NIM Test Cases

 Single-node test

 225km global resolution (10242 columns)

 Time-step = 900 seconds

 72 time steps

 WSM6 and RRTMG-LW called every time
step

 Mimic expected number of columns per
node for target resolution (~3km)

 32-level idealized case

 32-level and 41-level real data cases

14

9/18/14

Devices and Compilers

 SNB 2 sockets (on loan from Intel)
 E5-2670, 2.6GHz, 16 cores/node
 ifort 14

 IVB-EP 2 sockets (Intel endeavor)
 E5-2697v2, 2.7GHz, 24 cores/node
 ifort 15 beta

 HSW-EP 2 sockets (Intel endeavor)
 E5-2697v3, 2.6 GHz, 28 cores/node
 ifort 15 beta

 KNC 1 socket (on loan from Intel)
 7120A, 1.238GHz
 ifort 14

 NVIDIA K20X GPU (Titan, ORNL)
 Mark Govett, F2C-ACC, work in-progress

15

9/18/14

WSM6 Run Times

 Intel optimizations reduce precision and make
assumptions about padding, streaming stores, etc.

 Defensible because WSM6 uses single precision in
WRF

 KNC: ~12% further speedup using ifort 15 (not beta)
 GPU preliminary result courtesy of Mark Govett

16

Device Threads Chunk Width

(DP words)

Time Time with Intel

Optimizations

SNB 32 4 7.5 6.7

KNC 240 8 8.7 5.6

IVB-EP 48 4 3.4 3.1

HSW-EP 56 4 2.6 --

K20X GPU -- -- 5.3 --

9/18/14

WSM6: Benefit of Compile-Time

Constants for Xeon & Xeon Phi

 1.4x speedup on KNC

 1.3x speedup on IVB

17

Device Threads Baseline

Time

Time With

Constant “k”

Time With Constant

“i” and “k”

KNC 240 12.5 11.6 8.7

IVB 48 4.4 4.1 3.4

9/18/14

WSM6: Effect of Vector Length

on Xeon & Xeon Phi

18

Device 2 DP Words 4 DP

Words

8 DP Words 16 DP Words 32 DP Words

KNC -- -- 8.68 8.82 10.10

IVB 3.76 3.38 3.51 3.68 3.71

9/18/14

RRTMG-LW: Benefit of Compile-

Time Constants (Preliminary)

 ifort 15 (not beta)

 ~1.4x speedup on KNC

 ~1.4x speedup on IVB

 Directives not yet added, more tuning TBD

19

Device Threads Baseline

Time

Time With

Constant “k”

KNC 240 19.1 13.5

IVB 48 4.5 3.2

9/18/14

Compile-Time Constants: All

Stars Must Align

 Compiler flags

 Use compile-time constants for loop *and*
memory bounds

 Use ifort 14 or 15

 Use SNB, IVB, or HSW (*not* Westmere)

 Use AVX for maximum effect

 May need directives

 !DIR$ASSUME_ALIGNED

 !DIR$VECTOR ALIGNED

 Pay attention to compiler output

20

9/18/14

Summary

 KNC competitive with SNB despite slower
clock (WSM6)

 K20X GPU competitive with KNC

 KNL (and GPU) will need to catch up with
IVB/HSW

 Optimizations sped up both Xeon and Xeon
Phi

 Optional compile-time constants beneficial for
Intel compiler and for GPU shared memory

 Simplified WSM5 and WSM6 code via
optional compile-time vertical loop and
memory bounds

21

9/18/14

Near-Future Directions

 Finish RRTMG-LW

 Understand use of optional compile-time
constants in more detail
 Possible future Intel compiler directives or

PGO to address this optimization?

 Test with other compilers (PGI, Cray)

 Considering solution for inclusion in NIM,
WRF, MPAS, etc. (with Michalakes)
 We’ve been here before, do better this time

 Target other WRF physics packages used by
NOAA models

 GFS physics

22

9/18/14

Thanks to…

 Intel: Mike Greenfield, Ruchira Sasanka,

Ashish Jha, Indraneil Gokhale, Richard Mills

 Provision of “loaner” system and access to

endeavor

 Consultations regarding code optimization

 Work-arounds for compiler issues

 Aggressive optimization

 John Michalakes

 Consultation regarding WSM5 work

 Code re-use

23

2/22/12 24

Thank You

24

9/18/14

Compiler Options

 Xeon baseline optimization flags
 -O3 –ftz -qopt-report-phase=loop,vec -qopt-

report=4 -align array64byte -xAVX
 Xeon aggressive optimization flags

 -fp-model fast=1 -no-prec-div -no-prec-sqrt -
fimf-precision=low -fimf-domain-exclusion=15 -
opt-assume-safe-padding

 Xeon Phi baseline optimization flags
 -O3 –ftz -vec-report6 -align array64byte

 Xeon Phi aggressive optimization flags
 -fp-model fast=1 -no-prec-div -no-prec-sqrt -

fimf-precision=low -fimf-domain-exclusion=15 -
opt-assume-safe-padding -opt-streaming-
stores always -opt-streaming-cache-evict=0

25

9/18/14

Effect of Thread Count

26

Device Max. Threads 25% 50% 75% 100%

KNC 240 14.9 10.5 -- 8.7

IVB 48 -- 4.4 3.8 3.4

