

Stabilized approximate Kalman filter and its extension towards parallel implementation

An example of two-layer Quasi-Geostrophic model + CUDA-accelerated shallow water *Alex Bibov, Heikki Haario*

10/2014

Contents

- Data assimilation at glance
- Approximating Extended Kalman filter using BFGS: instability
- Stabilizing correction for approximate EKF
- Combined state space and parallel filtering
- Current test case: the Two-Layer Quasi-Geostrophic model
- Experimental results
- The next test case: large-scale Shallow Water model
- CUDA accelerated implementation
- Example runs

Data assimilation at glance

- Consider coupled system of stochastic equations:

$$\begin{aligned} x_{k+1} &= \mathcal{M}_k(x_k) + \varepsilon_k, \\ y_{k+1} &= \mathcal{H}_{k+1}(x_{k+1}) + \eta_{k+1}, \end{aligned}$$

where $x_k (\in \mathbb{R}^n)$ describes system state at time instance k,

 $y_{k+1} (\in \mathbb{R}^m)$ is observed data obtained at time instance k + 1, \mathcal{M}_k is state transition operator, and \mathcal{H}_{k+1} is observation mapping describing how system state relates to the observed data at a certain time instance,

 ε_k and η_{k+1} are random terms that model prediction and observation uncertainties.

- The task: given the estimate x_k^{est} of state x_k and observation y_{k+1} derive estimate x_{k+1}^{est} .

Approximating the EKF

- Denote $C_k = Cov(x_k)$, $C_{\varepsilon_k} = Cov(\varepsilon_k)$, $C_{\eta_{k+1}} = Cov(\eta_{k+1})$
- Recall formulation of the Extended Kalman filter:
 - 1. Run the forecast model: $x_{k+1}^p = \mathcal{M}_k(x_k)$,
 - 2. Estimate forecast covariance: $C_{k+1}^p = Cov(x_{k+1}^p) = M_k^{TL}C_kM_k^{AD} + C_{\varepsilon_k}$,
 - 3. Compute the Kalman gain: $G_{k+1} = C_{k+1}^p H_{k+1}^{AD} (H_{k+1}^{TL} C_{k+1}^p H_{k+1}^{AD} + C_{\eta_{k+1}})^{-1}$,
 - 4. Compute state estimate: $x_{k+1}^{est} = x_{k+1}^p + G_{k+1}(y_{k+1} H_{k+1}^{TL}x_{k+1}^p)$,
 - 5. Find covariance of the estimate: $C_{k+1}^{est} = C_{k+1}^p G_{k+1}H_{k+1}^{TL}C_{k+1}^p$.
- <u>Problem</u>: Large dimension of state x_k induces issues at covariance matrix storage
- <u>Solution</u>: approximate problematic matrices the same way as it is done for Hessians of large-scale optimization problems

EKF approximation based on BFGS*

- 1. Run forecast model: $x_{k+1}^p = \mathcal{M}_k(x_k)$,
- 2. At the code level define operator implementing forecast covariance matrix: $C_{k+1}^{p} = M_{k}^{TL} x_{k+1}^{p} M_{k}^{AD} + C_{\varepsilon_{k}},$
- 3. Apply L-BFGS minimization to auxiliary quadratic cost function: $f(x) = x^T A x - x^T b,$

where $A = H_{k+1}^{TL} C_{k+1}^{p} H_{k+1}^{AD} + C_{\eta_{k+1}}$, and $b = y_{k+1} - H_{k+1}^{TL} x_{k+1}^{p}$,

- 4. Assign x^* to the minimizer of f(x) and B^* to approximation of Hessian matrix A produced as part of output from L-BFGS
- 5. Compute state estimate: $x_{k+1}^{est} = x_{k+1}^p + C_{k+1}H_{k+1}^{AD}x^*$
- 6. Approximate covariance matrix of the estimate by applying L-BFGS minimization to a quadratic cost function with Hessian defined as follows: $C_{k+1}^p - C_{k+1}^p H_{k+1}^{AD} B^* H_{k+1}^{TL} C_{k+1}^p$

*See H. Auvinen et. al. "The variational Kalman filter and an efficient implementation using limited memory BFGS"

BFGS EKF: Instability problem

- Approximate estimate covariance matrix $C_{k+1}^p - C_{k+1}^p H_{k+1}^{AD} B^* H_{k+1}^{TL} C_{k+1}^p$ may have "non-physical" negative eigenvalues as B^* is itself approximation of prior covariance projected onto the observation space:

$$B^* \approx \left(H_{k+1}^{TL} C_{k+1}^p H_{k+1}^{AD} + C_{\eta_{k+1}} \right)^{-1}$$

- L-BFGS on the other hand relies on the eigenvalues of Hessian being non-negative
- We correct this problem by injecting "stabilizing correction", i.e. we replace B^* by $(2I B^*A)B^*$.
- Let us denote $C_{k+1}^p C_{k+1}^p H_{k+1}^{AD} (2I B^*A) B^* H_{k+1}^{TL} C_{k+1}^p$ as \hat{C}_{k+1}^{est} .

<u>Lemma.</u> For any symmetric matrix B^* , the matrix \hat{C}_{k+1}^p is non-negative. Moreover, as $B^* \to A^{-1}$ necessarily $\hat{C}_{k+1}^{est} \to C_{k+1}^{est}$ and the following inequalities hold:

$$\begin{aligned} \left\| \hat{C}_{k+1}^{est} - C_{k+1}^{est} \right\|_{Fr} &\leq \|A\| \left\| H_{k+1}^{TL} C_{k+1}^{p} \right\|_{Fr}^{2} \|B^{*} - A^{-1}\|^{2}, \\ \left\| \hat{C}_{k+1}^{est} - C_{k+1}^{est} \right\| &\leq \|A\| \left\| H_{k+1}^{TL} C_{k+1}^{p} \right\|^{2} \|B^{*} - A^{-1}\|^{2}. \end{aligned}$$

Current toy-case: the QG-model*

- The current test case for DA testing purposes is provided by Two-Layer Quasi-Geostrophic model:
 - Simulates "slow" wind motions
 - Resides on cylindrical surface vertically divided into two layers
 - The boundary conditions are periodic in zonal direction and fixed at the top and at the bottom of the cylinder
- The model is chaotic, dimension can be adjusted by changing resolution of the spatial grid
- Provides a neat toy-case, which can be run with no special hardware

*See C.Fandry and L.Leslie, "A two-layer quasi-geostrophic model of summer trough formation in the Australian subtropical easterlies".

Current toy-case: the QG-model

- Governing equations with respect to unknown stream function $\psi_i(x, y)$

$$\begin{aligned} q_1 &= \nabla^2 \psi_1 - F_1(\psi_1 - \psi_2) + \beta y, \\ q_2 &= \nabla^2 \psi_2 - F_2(\psi_2 - \psi_1) + \beta y + R_s, \\ \frac{D_1 q_1}{Dt} &= \frac{D_2 q_2}{Dt} = 0, \end{aligned}$$

where $R_s = R_s(x, y)$ is orography surface,

$$\frac{D_i \cdot}{Dt} = \frac{\partial \cdot}{\partial t} + u_i \frac{\partial \cdot}{\partial x} + v_i \frac{\partial \cdot}{\partial y} \text{ and } \nabla \psi_i = (v_i, -u_i).$$

 The equations are numerically solved by combining finite-difference approximation of derivatives with semi-Lagrangian advection

QG-model: chaotic behavior

Biased run, top layer

Numerical experiments: the QG-model

- Data assimilation performance was tested in emulated environment: we ran two instances of the qg-model at different resolutions and used one to emulate observations and the other to make predictions
- Observations were collected from a sparse subset of the state vector elements
- Predictions were made at lower resolution then the "truth" and the values of the depths of the model layers were biased
- Sources of incoming observations were interpolated onto the spatial grid of lower-resolution model by bilinear interpolation
- Estimation quality was measured by root mean square error
- We run several experiments at different resolutions and with different number of observations employing stabilized BFGS EKF, usual uncorrected BFGS EKF, weak-constraint 4D-VAR and the parallel filter

Convergence with and without the stabilizing correction

No.	Truth run res.	Biased run res.	Obs. num.	State dim.
1	10-by-10	9-by-9	50	162
2	15-by- 15	12-by-12	85	288
3	80-by-40	40-by-20	500	1600

Table 1: Benchmark options depending on model resolution.

		Benchmark							
		Ι		II		III			
		BFGS-EKF	SA-EKF	BFGS-EKF	SA-EKF	BFGS-EKF	SA-EKF		
BFGS vectors	5	0.5860	0.5508	—	0.6476	_	0.4102*		
	10	0.5573	0.5445	0.7021	0.6718	—	0.4412		
	15	0.4959	0.4788	0.5807	0.5690	—	0.3815		
	20	0.4686	0.4695	0.5195	0.5152	0.3686	0.3656		
EKF ref.		0.4247		0.4346		0.2694			

Table 2: Mean values of RMS error obtained from the benchmarks using varied capacity of the BFGS storage.

Parallel filter

Consider combined state and observation vectors

$$\bar{x}_k = (x_{k-P+1}, x_{k-P+2}, \dots, x_k),$$

 $\bar{y}_k = (y_{k-P+2}, y_{k-P+3}, \dots, y_{k+1}).$

- We extend transition and observation operators onto combined state space:

$$\overline{\mathcal{M}}_{k}(\bar{x}_{k}) = \left(\mathcal{M}_{k-P+1}(x_{k-P+1}), \mathcal{M}_{k-P+2}(x_{k-P+2}), \dots, \mathcal{M}_{k}(x_{k})\right), \\ \overline{\mathcal{H}}_{k+1}(\bar{y}_{k}) = \left(\mathcal{H}_{k-P+2}(x_{k-P+2}), \mathcal{H}_{k-P+3}(x_{k-P+3}), \dots, \mathcal{H}_{k+1}(x_{k+1})\right)$$

- We call the data assimilation problem formulated for $\overline{\mathcal{M}}_k$ and $\overline{\mathcal{H}}_{k+1}$ the parallel filtering task.

Parallel filter: additional comments

- Model error covariance C_{ε_k} and observation error covariance $C_{\eta_{k+1}}$ can be extended to combined state and observation spaces as follows:

$$\bar{C}_{\varepsilon_{k}} = \begin{pmatrix} C_{\varepsilon_{k-P+1}} & \dots & 0\\ \dots & \dots & \dots\\ 0 & \dots & C_{\varepsilon_{k}} \end{pmatrix},$$
$$\bar{C}_{\eta_{k+1}} = \begin{pmatrix} C_{\eta_{k-P+2}} & \dots & 0\\ \dots & \dots & \dots\\ 0 & \dots & C_{\eta_{k+1}} \end{pmatrix}.$$

- Adding non zero off-diagonal terms into definition of \bar{C}_{ε_k} and $\bar{C}_{\eta_{k+1}}$ allows to account for time-correlated prediction and observation errors, which relaxes one of the classical assumptions used by derivation of the Kalman filter formulae

Parallel filter: additional comments

- Allows to account for cross-time correlations between the states included into analysis
- Combines observations from several time steps, which should help in case of deficient observations
- Enables natural parallel implementation, as model propagations within combined state are executed independently
- Retrospective analysis of the older states are computed as part of the normal algorithm's output with no extra outlay

Main problem: parallel filtering task is extremely large scale, which means that a highly-compressed packaging of covariance data is required.

Solution: Use L-BFGS approximation with stabilization introduced earlier.

Relation to the Weak-Constraint 4D-Var*

- Consider combined transition operator $\overline{\mathcal{M}}_k$ and combined observation mapping $\overline{\mathcal{H}}_{k+1}$. Assume that x^b is a prior state estimate at time instance k - P + 1. Then weak-constraint 4D-Var estimate is calculated by minimizing the following cost function with respect to x_k :

$$l(\bar{x}_k|\bar{y}_k, x^b) = \mathcal{R}_1(\bar{x}_k, \bar{y}_k) + \mathcal{R}_2(\bar{x}_k) + \mathcal{R}_3(x_{k-P+1}, x^b)$$

- $\mathcal{R}_1(\bar{x}_k, \bar{y}_k)$ defines measure for observation discrepancy:

$$\mathcal{R}_1(\bar{x}_k, \bar{y}_{k+1}) = \sum_{i=0}^{P-1} \|y_{k-P+1+i} - \mathcal{H}_{k-P+2+i}(x_{k-P+1+i})\|_{\mathcal{C}^{-1}_{\eta_{k-P+1+i}}}^2$$

- $\mathcal{R}_2(\bar{x}_k)$ smoothing part, accounts for prediction errors:

$$\mathcal{R}_{2}(\bar{x}_{k}) = \sum_{i=1}^{P-1} \|x_{k-P+1+i} - \mathcal{M}_{k-P+i}(x_{k-P+i})\|_{Q_{k-P+i+1}}^{2}$$

- $\mathcal{R}_3(x_{k-P+1}, x^b)$ penalizes discrepancy with the prior:

$$\mathcal{R}_{3}(x_{k-P+1}, x^{b}) = \|x_{k-P+1} - x^{b}\|_{B^{-1}}^{2}.$$

*See Y. Trémolet "Accounting for an imperfect model in 4D-Var"

Relation to the Weak-Constraint 4D-Var

- Weak-constraint 4D-Var employs the concept of time window composed of a few consequent states.
- Propagations of each state over the time are performed independently from each other and thus can be executed in parallel.
- It is allowed to have a "jump" q_i between prediction $\mathcal{M}_i(x_i)$ and the next state x_{i+1} . This accounts for prediction error.
- Forecast is defined by prediction made from the state located at the end of the window

Relation to the Weak-Constraint 4D-Var

- Estimation task of the parallel filter can be reformulated in terms of the following cost function, which should be minimized with respect to \bar{x}_k :

$$l(\bar{x}_k|\bar{y}_k, \bar{x}_k^p) = \mathcal{R}_1(\bar{x}_k, \bar{y}_k) + \mathcal{R}_2(\bar{x}_k, \bar{x}_k^p).$$

- $\mathcal{R}_1(\bar{x}_k, \bar{y}_k)$ penalizes discrepancy between observation and the estimate: $\mathcal{R}_1(\bar{x}_k, \bar{y}_k) = \sum_{i=0}^{P-1} \|y_{k-P+1+i} - \mathcal{H}_{k-P+1+i}(x_{k-P+1+i})\|_{\mathcal{C}_{\eta_k-P+1+i}}^2$,
- $\mathcal{R}_2(\bar{x}_k, \bar{x}_k^p)$ penalizes discrepancy between the estimate and the forecast:

$$\mathcal{R}_{2}(\bar{x}_{k}, \bar{x}_{k}^{p}) = \left\| \bar{x}_{k} - \bar{x}_{k}^{p} \right\|_{(\bar{C}_{k+1}^{est})^{-1}}^{2}, \text{ where } \bar{x}_{k}^{p} = \overline{\mathcal{M}}_{k-1}(\bar{x}_{k-1}^{est}).$$

- If C_{k+1}^{est} is block-diagonal (it is usually not in practice), then $\mathcal{R}_2(\bar{x}_k, \bar{x}_k^p)$ can be reduced to the following sum:

$$\mathcal{R}_{1}(\bar{x}_{k}, \bar{y}_{k}) = \sum_{i=0}^{P-1} \left\| x_{k-P+1+i} - x_{k-P+1+i}^{p} \right\|_{\left(C_{k-P+1+i}^{est} \right)^{-1}}.$$

Relation to the Weak-Constraint 4D-Var

- If \overline{C}_{k+1}^{est} is block-diagonal then parallel filtering effectively reduces to weakconstraint 4D-Var with fixed predictions $x_i^p = \mathcal{M}_{i-1}(x_{i-1})$.
- If parameter \bar{x}_i^p in the parallel filtering likelihood function is allowed to vary during minimization and \bar{C}_{k+1}^{est} is block-diagonal, then parallel filtering becomes equivalent to the weak-constraint 4D-Var.
- In parallel filtering we do not need to assume block-diagonal approximations of covariance matrices, which enables cross-correlations between time subwindows. In Weak-Constraint 4D-Var the same effect is achieved by unfixed value of x_i^p .
- Dimension of the data assimilation problem defined by parallel filtering can be effectively treated by low-memory approaches provided by L-BFGS EKF approximation with stabilizing correction.

Numerical experiments: the QG-model

- The total window comprised three 6-hour sub-windows (18-hour analysis)
- Dimension of combined state for 18-hour window was 4800
- BFGS storage capacity was set to 20 vectors
- Quality of obtained estimates was measured by root mean square error
- The results were compared against usual single-state SA-EKF and weak-constraint 4D-VAR
- Model used to simulate observations had spatial grid resolution 40-by-80 points in both layers
- Prediction model used 4-times smaller resolution of 20-by-40 points in both layers
- Integration time step was set to one hour of model time

Test of concept: 200 observations

Future case: Large-Scale Shallow Water

$$\begin{cases} h_t + (hu)_x + (hv)_y = 0, \\ (hu)_t + \left(hu^2 + \frac{1}{2}gh^2\right)_x + (huv)_y = -ghB_x - gu\sqrt{u^2 + v^2}/C_z^2, \\ (hu)_t + (huv)_x + \left(hu^2 + \frac{1}{2}gh^2\right)_y = -ghB_y - gv\sqrt{u^2 + v^2}/C_z^2, \end{cases}$$

Here *h* denotes water elevation, *u* and *v* are horizontal and vertical velocity components, B_x and B_y denote gradient direction of the surface implementing topography, *g* is acceleration of gravity, C_z is the Chézy coefficient.

 It is possible to account for additional phenomena (e.g. wind stresses, friction etc.) by udjusting the right-hand-side part of the equations

*See <u>http://www.sintef.no/Projectweb/Heterogeneous-Computing/Research-</u> <u>Topics/Shallow-Water/</u> for details on practical application of the model

Numerics: Discretization by finite volumes

- Numerics: Kurganov-Petrova second-order well-balanced positivity preserving central-upwind scheme
- The problem is solved for a huge set of discretization cells that form a staggered grid.

Numerics: fitting with GPU architecture

Open your mind. LUT. Lappeenranta University of Technology

Roadmap of the GPU implementation

- Single call to cudaMalloc(...) to allocate a huge linear block of memory. The needed part is then accessed by the offsets.
- Extensive use of the shared memory: neighboring cells propagate their "boundary conditions" between each other through the CUDA shared memory
- No intermediate transfers to the host: all computations are done on the GPU-side
- The grid is horizontally divided between all available GPUs. Pinned memory is used for data exchange to minimize the I/O workload (albeit, this part needs more testing)
- The serial part of the code is reduced to data initialization, hence the impact of the Amdahl's law is minimal → the code scales very good with growth of the spatial resolution (one can run up to 3 000 000 dimensional shallow water in very this laptop!)
- Under certain conditions we were able to reach 100x performance boost over CPU-hosted implementation based on intel MKL routines

Conclusion

- Presented an algorithm based on Kalman filter approximation, which is able to preserve stability when applied to large-scale dynamics
- A further improvement for the approach based on parallelization is introduced
- Both concepts are tested with a toy-case chaotic model, which can be made fairly large-scale by increasing spatial discretization
- A new test model, which can be run at a very high resolution on widely available hardware is implemented (thanks to CUDA!)

Thank you for attention!