

CURRENT STATE OF SNOW REMOTE SENSING OBSERVATIONS, FUTURE DIRECTION AND REMAINING

Outline

- VIS / NIR observations
 - Extent
 - Grain size
 - Snow mass (LIDAR)
- Microwave observations
 - Historical algorithms
 - Snow heterogeneity
 - Physics-based modelling
- Summary
- Future mission?

VIS / NIR

Snow – cloud discrimination

Colour composite - high cloud (white), snow (pink), low cloud (yellow)

VIS / NIR Remote sensing of snow

Nolin, A., J. Dozier (2000), A hyperspectral method for remotely sensing the grain size of snow, Rem. Sens. Env., 74 (2), 207–216

http://www.jpl.nasa.gov/images/earth/california/20131209/AS O_AGUPressRelease_9Dec2013_vF.pdf

ASO Snow Depth Tuolumne River Basin April 2, 2013

Unprecedented snow depth and snow water equivalent detail at full basin scale.

http://www.jpl.nasa.gov/images/earth/california/20131209/ASO_AGUPressRelease_9 Dec2013_vF.pdf Forecast corrected by ASO results

February climatology

SWE = 4.77 * (18H - 37H)

SNOW MASS FROM MICROWAVE

The basis of the Chang Algorithm

Microwave emission (Tb) vs snow mass (SWE) is derived using the Mie Scattering model

Other parameters must be known!

Sensitivity of snow mass algorithm to grain size

Other approaches

SWE = 4.77 * (18H -37H)

 $SD = b (\Delta TB)^2 + c$ ΔTB

b, c: $f(d_{eff}, \rho)$

FIG. 10. Snow class distribution based on climate variables in (a) Eurasia and (b) North America.

GlobSnow

GlobSnow

- Snow density 240 kg m⁻³
- Single layer

Stratigraphy

Snow metamorphism

Electron and Confocal Microscopy Laboratory, Agricultural Research Service, U. S. Department of Agriculture.

Growth is driven by density, temperature and temperature gradient: snow models

Snow mass data assimilation system

Includes multiple scattering within the snow layer, scattering and reflectivity via Fresnel equations

$$T_B(d^-, q) = T_B(0^+, q) e^{-(k_e - qk_s)\sec q d}$$
$$+ \frac{k_a T_s}{k_e - qk_s} \left(1 - e^{-(k_e - qk_s)\sec q d}\right)$$

Accuracy of emission models

A note on snow microstructure

D_{max} vs D_{opt} vs D_{eff}

A range of length scales!

More data needed...

Summary

- Snowpack information is valuable
- Sensors have different benefits and assumptions
- Other information is required to give snow mass estimates (stratigraphy, density, grain size....)
- Snowpack evolution models can give snow parameters
- Microwave emission models need further development
- Know which direction to go in but....

Without a snow mission there will be minimal funding for algorithm and model development

 Dual-band SAR (9.65 / 17.25GHz)

Wiversity of Reading

- 6am / pm overpass
- Revisit: 3 / 15 days
- Resolution:
 - few 100m
- Launch in 2019?

What do we want?

Mission Requirements

- What depth of snow is important and accuracy (c.f. 4% soil moisture)
- Spatial resolution
- Repeat cycle
- Melt state
- Regional or global

Your opportunity – planning has started for next ESA / NASA mission concepts

Email me: m.j.sandells@reading.ac.uk

Airborne Snow Observatory

Correlation function

Autocorrelation function may be a different shape

Absorption and Scattering Within Snow

- Sensitive to the snow grain size (and density)
- Scattering mostly in the forward direction (96%)
- Wet snow highly absorptive, near blackbody

Capabilities

- Evaluate against time series of microstructure and temperature profiles, and temporal TB
- Use other microwave models, and examine microstructure metric relationships
- Can we go further?

JIM

- Contains all major snow parameterisations
- 1701 Unique model combinations
- 63 model subset:
 - Compaction parameterisation (3)
 - Thermal conductivity (3)
 - Fresh snow density (3)
 - Snow hydrology (3)
- This has now been coupled with 3 of 5 microstructure evolution functions: MOSES, SNICAR, SNTHERM

JIM subset: Sodankylä

JIM subset: DMRTML

MOSES SNICAR SNTHERM

JIM subset: DMRTML-SNTHERM

