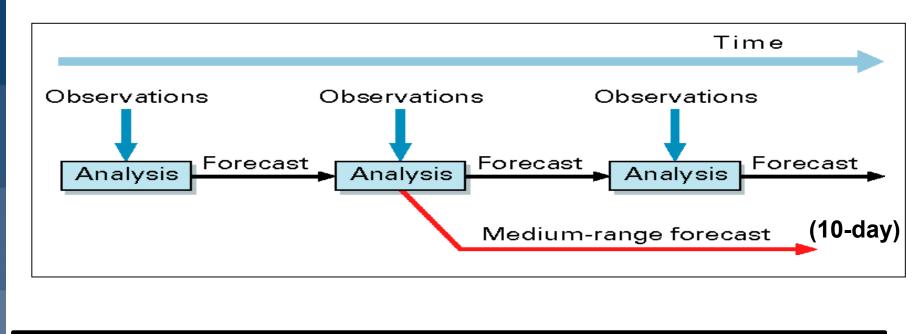
H-SAF /HEPEX Workshops ECMWF, Reading, UK, 3-7 November 2014


ECMWF Snow modelling and data assimilation

Patricia de Rosnay, Emanuel Dutra, Anne Fouilloux, Gianpaolo Balsamo, Ioannis Mallas, Enrico Fucile, Philippe Lopez, Clément Albergel, Anton Beljaars and Lars Isaksen

© ECMWF

ECMWF Integrated Forecasting System (IFS) for Numerical Weather Prediction (NWP)

- Forecast Model: GCM including the H-TESSEL land surface model
- \blacktriangleright Data Assimilation \rightarrow initial conditions of the forecast model prognostic variables
 - 4D-Var for atmosphere
 - Land Data Assimilation System

Snow in the IFS

Snow Model: Component of H-TESSEL

Single layer snowpack Balsamo et al., JHM, 2009 and Dutra et al., JHM 2010

- Snow water equivalent SWE (m), ie snow mass 7
- Snow Density ρ_s , between 100 and 400 kg/m³
- Snow Albedo between 0.5 and 0.85

Observations:

- Conventional snow depth data: SYNOP and National networks
- Snow cover extent: NOAA NESDIS/IMS daily product (24km & 4km)

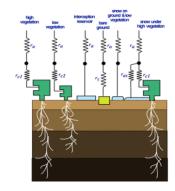
Drusch et al., JAM, 2004 ; de Rosnay et al., SG 2014 de Rosnay et al., ECMWF Res. Mem. R48.3/PdR/1028 2010,

and ECMWF Res. Mem. R48.3/PdR/1139 2011

Data Assimilation:

- Optimal Interpolation (OI) in oper IFS
- Analysed variable: SWE, ρ_{c}

de Rosnay et al., Survey of Geophysics 2014

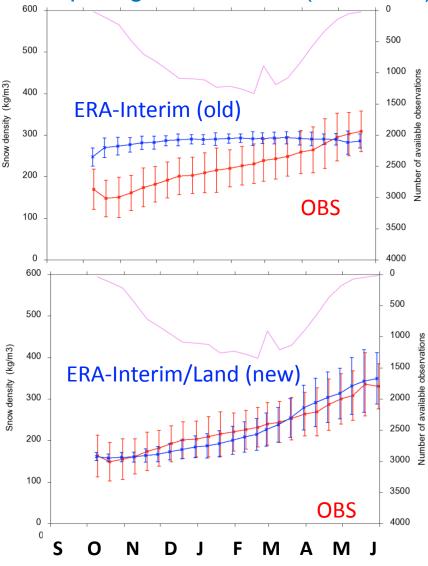

Prognostic variables

H-TESSEL (Balsamo et al., JHM, 2009) accounts for up to 7 surface tiles over land: bare ground, low and high vegetation, interception, lakes and two tiles for snow: exposed snow; shaded snow (under high veg)

Snow model revision in 2009

Dutra et al., JHM 2010

	OLD	CURRENT	
Liquid water	Dry snow only	 Fraction of liquid water fn of snow mass & temp Interception of rainfall 	
Snow Density	Empirical exponential increase and snowfall density constant=100 kg.m ⁻³	Physically based (Anderson 1976) and snow fall density fn of temperature & wind speed	
Snow Albedo	 Exponential(melting) / Linear decay Reset to max (0.85) snowfall > 1 mm hr⁻¹ Shaded: constant albedo (0.15) 	 Account for liquid water in exponential decay Continuous reset to max depending on the amount of snowfall (10 mm to full reset) Shaded : vegetation type dependent (Moody et al. 2007) 	
Snow fraction	Function of snow mass with a threshold SF=1 for SWE >= 15 mm	Function of snow depth (\rightarrow mass and density) with a threshold of SF=1 for SD >= 10 cm	


Validation against in situ snow observations (SnowMIP2 sites)

Forest Open а OLD **Snow mass** 300 300 Melting period Current SWE (kg.m⁻²) Obs Old: too late in open sites 200 200 00 too early for forests 100 100 Current: Albedo improved open sites Rain interception improve forest Õct Dec Feb Apr Õct Dec Feb Apr Jun b e 1.2 1.2 Snow depth 1 0.8 Depth (m) 0.8 0.6 0.6 0.4 0.4 0.2 0.2 0 M 0 [™] Oct Feb Dec Feb Apr Jun Dec Apr Jun С 500 500 Snow density: **Snow density** 400 Density (kg.m⁻³) 400 **OLD:** overestimated compaction 300 300 Current: Closer to observations 200 200 100 100 Decreased snow density 0 L Oct 0 L Oct \rightarrow Increased thermal insulation Jun Jun Dec Feb Apr Dec Feb Apr Fraser 2004-05 Fraser 2004-05 \rightarrow Reduce negative soil temperature bias

Dutra et al., JHM 2010

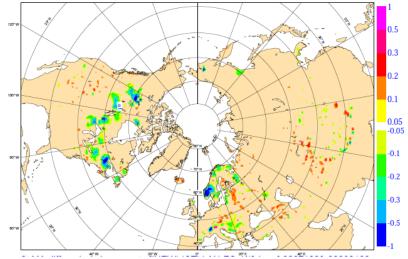
Comparing ERA-Interim (Old snow) with ERA-Interim/Land (New snow)

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Snow density evolution (data from the former Soviet Union Hydrological Snow Surveys) Mean seasonal cycle (1979-1993)

Old model overestimates density

Current snow density formulation improves significantly the match with observations ERA-Interim/Land


A correct snow density simulation is very important to link SWE to Snow depth measurements

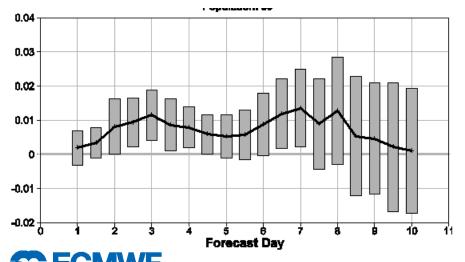
(Balsamo et al. HESSD 2014)

© ECMWF

Snow mass analysis increments: |NEW| - |OLD|

sd MA diff analysis increments [INEW|-|CTL| AN-FC, mm/6-hour] 20071003-20080102

Effects of snow model improvements on snow data assimilation


Cold colors show reduction of assimilation increments → Short range forecast closer to observations

Impact of snow model on NWP:

RMSE forecast (OLD-Current) N. Hemisphere 1000hPa Temperature at 00UTC

Significant improvement of near surface temperature

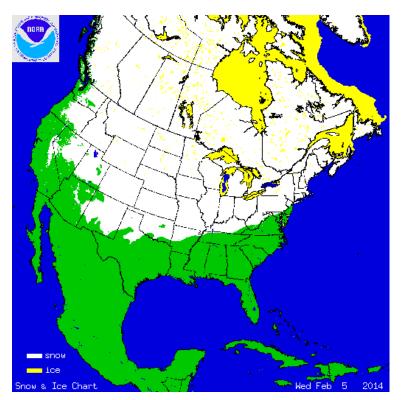
(01-10-2007-30-04-2008)

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Interactive Multisensor Snow and Ice Mapping System (IMS)

- Time sequenced imagery from geostationary satellites
- AVHRR,
- SSM/I
- Station data

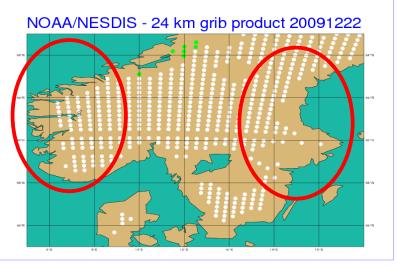
Northern Hemisphere product

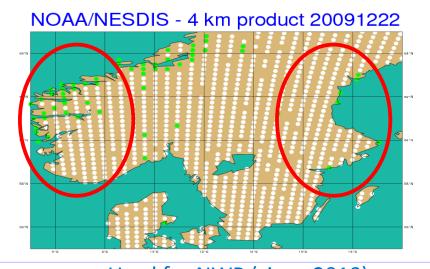

- Daily, no time stamp
- Polar stereographic projection

Information content: Snow/Snow free

Data used at ECMWF:

- **24km product in Grib** Used in ERA-Interim (2004-present) and in operations (2004-2010)
- 4 km product in Ascii
 Revised pre processing
 Used in operations (Nov 2010-present)

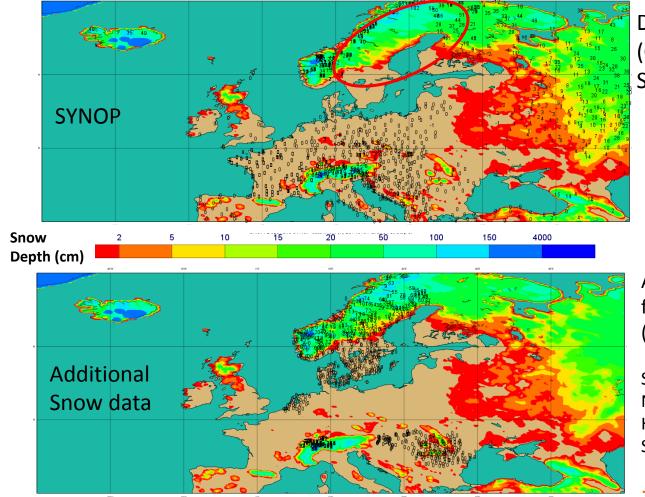

NOAA/NESDIS IMS Snow extent data


IMS Snow Cover 5 Feb. 2014

More information at: http://nsidc.org/data/g02156.html

NOAA/NESDIS IMS Snow Cover 24km vs 4km product

Used in ERA-Interim



Used for NWP (since 2010)

IMS Products after pre-processing at ECMWF

- Coast mask applied in the 24km product (inaccurate geolocation information in the grib product)
- Data thinning (1/36) of the 4km product -> same data quantity, improved quality
- 4km product provides more local information than 24km product

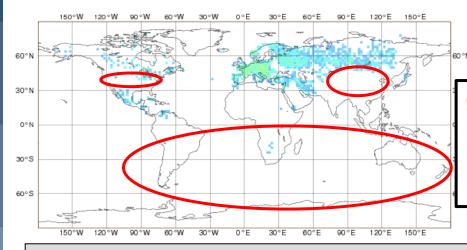
2014 01 01 at 06UTC Snow SYNOP and National Network data

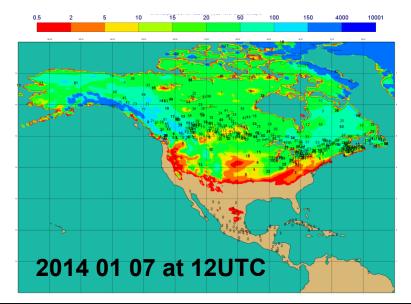
Data available on the GTS (Global Telecommunication System)

Additional data from national networks (7 countries):

Sweden (>300), Romania(78), The Netherlands (33), Denmark (43), Hungary (61), Norway (183), Switzerland (332).

 \rightarrow Dedicated BUFR (2011)

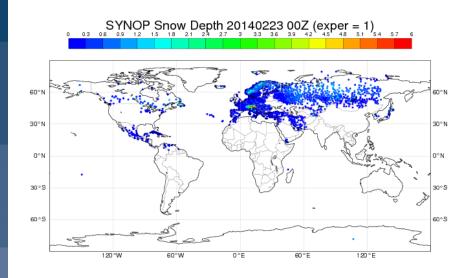

(de Rosnay et al. ECMWF Res. Memo, R48.3/PdR/1139, 2011)


ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

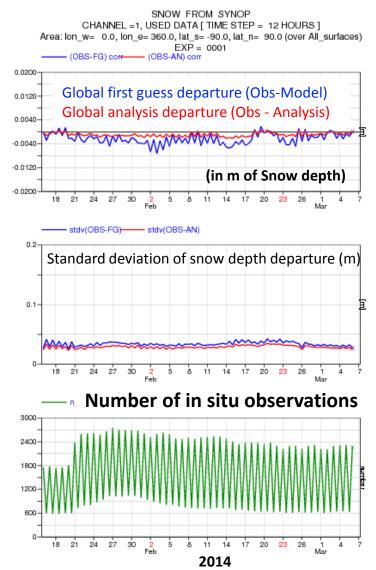
SYNOP Snow depth availability

Data available on the GTS (Global Telecommunication System)

Operational snow observations monitoring: http://old.ecmwf.int/products/forecasts/d/charts/ monitoring/conventional/snow/



Gap in USA, China and southern hemisphere But NRT data exist and is available, (e.g . >20000 station in USA) But it is not on the GTS for NWP applications.


- WMO GCW Snow Watch initiative to improve in situ snow depth data access (NRT and rescue), Brun et al 2013
- Dedicated BUFR template (WMO approved 2014) or SYNOP report
- \rightarrow WMO Members States encouraged to put on the GTS their snow depth data

© ECMWF

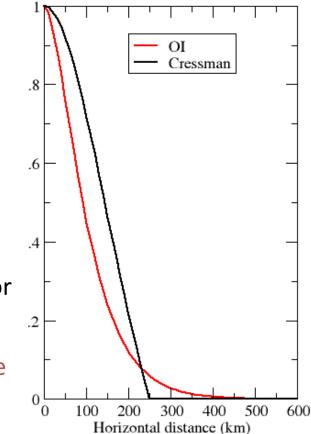
Snow depth observations available (>4500 per day in winter time)

Data assimilation system developments to enable monitoring of snow observations: From November 2013 (IFS cycle 40r1)

http://old.ecmwf.int/products/forecasts/d/charts/monitoring/conventional/snow

ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

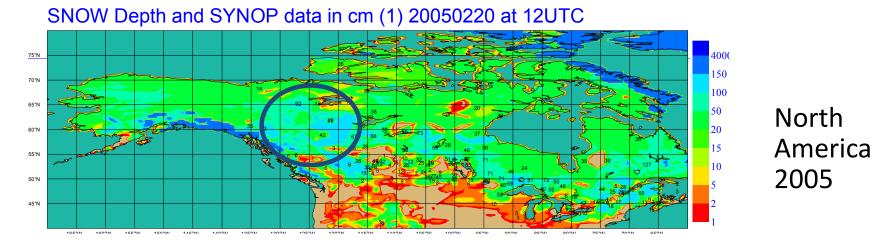
Snow depth increments: $\Delta S_j^a = \sum_{i=1}^N W_i \times \Delta S_i$

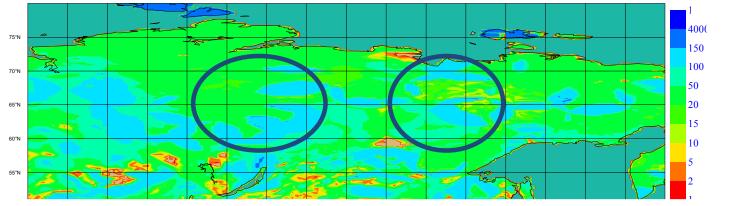

Cressman: ERA-Interim and oper until 2010

Weights are function of horizontal and vertical distances. Do not account for observations and background errors.

Optimal Interpolation (OI): Oper since 2010

The correlation coefficients follow a second-order autoregressive horizontal structure and a Gaussian for the vertical elevation differences.


OI has longer tails than Cressman and considers more observations. Model/observation information optimally weighted using error statistics.


de Rosnay et al., Surv. Geophys. 2014

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Cressman shows spurious snow Patterns where observations are scarce (Kalnay, 2003)

SNOW Depth and SYNOP data in cm (1) 20070212 at 12UTC

Validation data: NWS/COOP

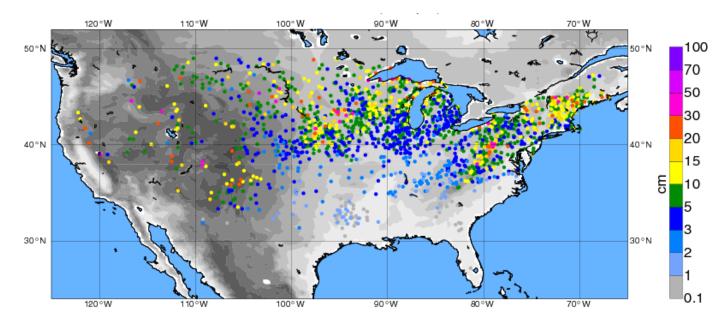
- NWS Cooperative Observer Program
- Independent data relevant for validation

- Used to validate a set of numerical experiments considering different assimilation approaches and IMS snow cover

Numerical Experiments	Bias (cm)	R	RMSE (cm)
Cressman, IMS 24 km	1.1	0.66	18.0
OI, IMS 24 km	- 2.0	0.74	10.1
OI, IMS 4km <1500m	- 1.5	0.74	10.1

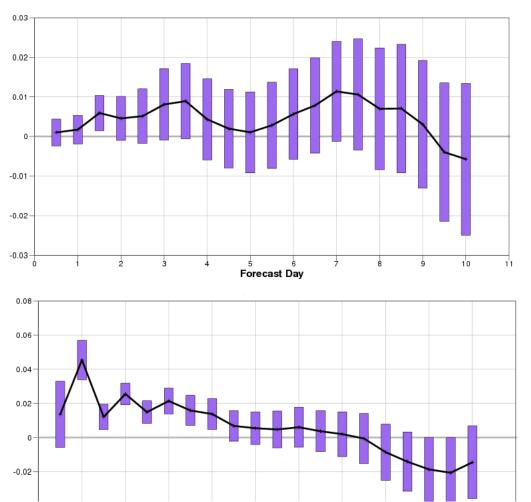
Oper until Nov 2010 ERA-Interim

- Oper since Nov 2010


Validation against ground data

 \rightarrow Improvement due to the OI compared to Cressman

ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS


Validation data: NWS/COOP

- National Weather Service Cooperative Observer Program
- Independent data relevant for validation

RMSE (cm) for the new snow analysis, winter 2010 (OI, IMS 4km except in mountainous areas)

Snow Data assimilation Impact on the Atmospheric Forecasts RMS 1000hPa Geopotential height

Northern Hemisphere DJF 2009-2010

Top: Cressman –OI impact (both use IMS 24km)

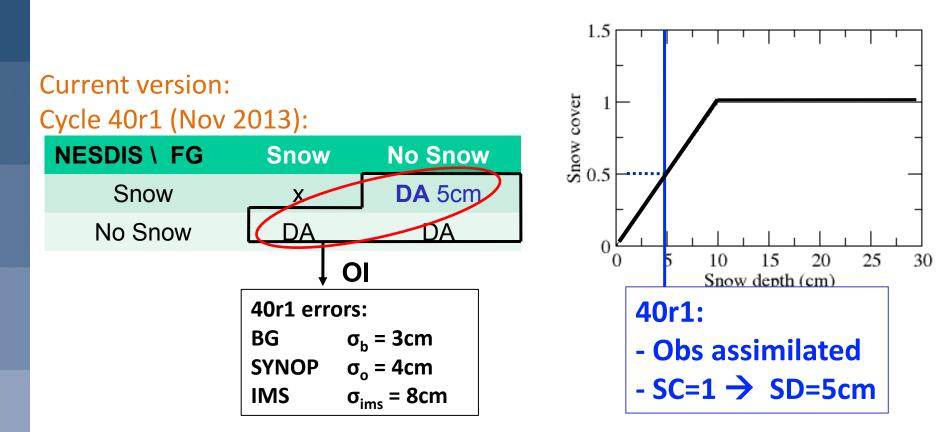
Positive : OI improves

Bottom: Overall impact (Old-New)

New: OI+IMS 4km Old: Cressman+ IMS 24km

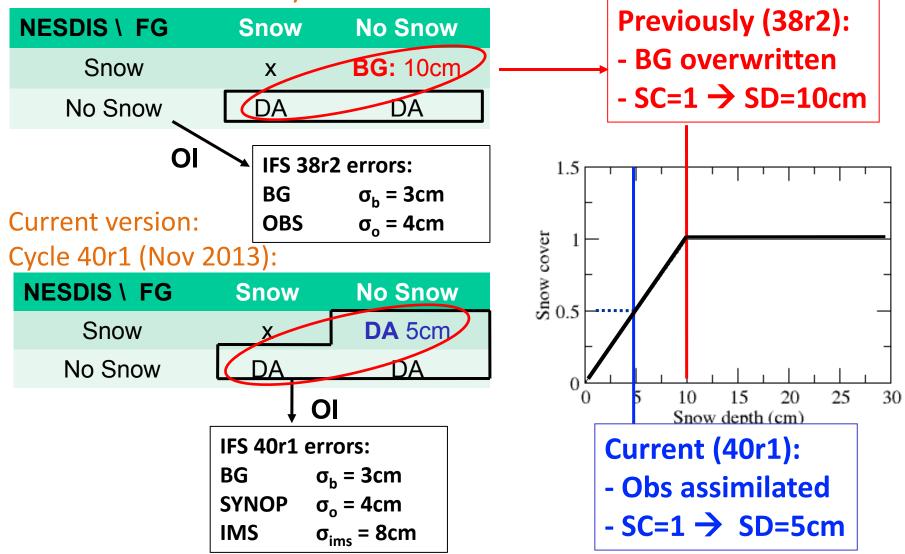
Positive: new improves

→ Main impact of snow data assimilation on atmospheric forecasts due to the IMS 4km and revised QC


ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

36r2 osuite Old: 70°N 28 Cressman+ IMS 24km 29 65°N 60°N 95°E 115°E 120°E 125°E 130°E 140°E 145°E 100°E 105°E 110°E 135°E New: **b** 36r4 esuite OI+ IMS 4km 70°N 28 21 17 29 20 FC impact (East Asia) 65°N RMSE 500 hPa Geopot H 60°N 0.08 140°E 145°E 95°E 100°E 120°F 125°F 130°E 135°E 115°F 0.06 20 50 100 150 4000 15 10 0.04 New snow analysis improves 0.02 both the snow depth patterns 0 (OI impact) and the atmospheric -0.02 -0.04 forecasts (IMS 4km+QC impact) -0.06 10 11 Forecast Day

Snow depth (cm) analysis and SYNOP reports on 30 October 2010 at 00 UTC


© ECMWF

Snow Data Assimilation: latest improvements NESDIS/IMS snow cover data DA

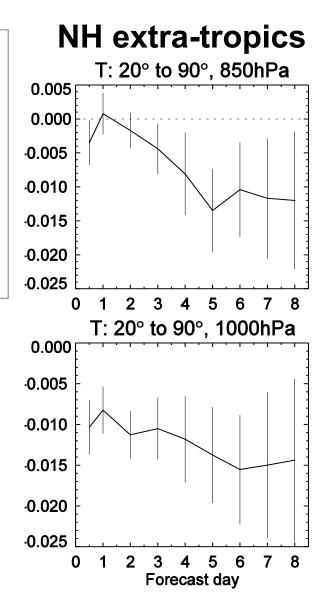
Snow Data Assimilation: latest improvements NESDIS/IMS snow cover data DA

Previous version: IFS Cycle 38r2

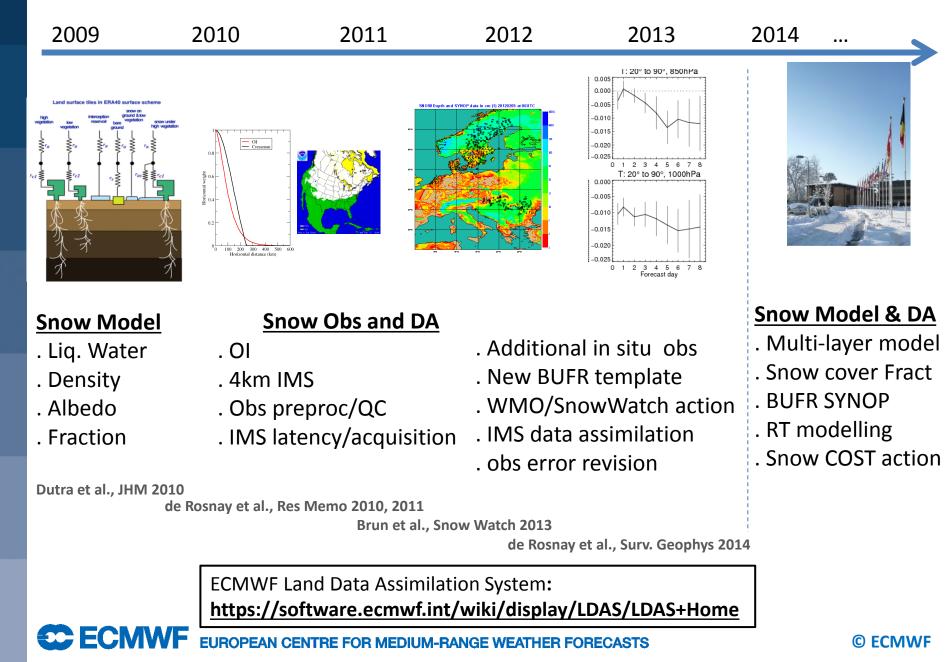
Revised snow analysis: Forecast impact

Temp FC RMSE (20 Dec 12 – 08 Mar 13)

IFS 40r1-38r2 (New-Old)


Improved use of IMS snow cover

- \rightarrow Relevant for snow line update
- → Significant impact on the atmosphere
- \rightarrow Forecast error reduction


Other improvements in the ECMWF snow analysis from Nov 2013:

- Technical developments for conventional and IMS Observation Data Bases (ODBs)
- New Land surface observations NRT monitoring for conventional snow depth, and for IMS snow cover observations:

https://software.ecmwf.int/wiki/display/LDAS/Land+Sur face+Observations+monitoring

Snow in the IFS Summary

