Estimating precipitation from surface and satellite systems: managing expectations

Chris Kidd

University of Maryland/Earth System Interdisciplinary Center and NASA/Goddard Space Flight Center

GPCP AIP-3 Shinfield Park c.1993

H-SAF/HYMEX, ECMWF, Reading, UK, 3-6 Nov, 2014

Goddard Space Flight Center

<u>Outline</u>

- What is precipitation?
- Satellite sensing of precipitation
- Surface observations of precipitation
- Precipitation retrieval schemes
- Validation of precipitation estimates
- Inter-comparison of precipitation estimates
- Latest inter-comparisons: GPM constellation

What is precipitation?

Precipitation is usually defined as the liquid (or equivalent) falling on a unit area over time from the atmosphere

Gauge measurements usually include surface-generated liquid, such as dew, frost and condensation

- Precipitation varies greatly temporally and spatially; the variability is regionally dependent (e.g. 'hydrological climax')
- Different users have different expectations; moisture budgets, water resources, civil defence, etc.

Satellite Sensing of Precipitation

Observational capability - ability of a sensor to observe precipitation

- wavelength/frequency
- resolution (usually horizontal/spatial)
- sensitivity

<u>**Retrieval capability**</u> - ability of a scheme to 'convert' observations into precipitation estimates

- simple empirical observation-rainrate relationships
- multi-channel/multi-sensor retrievals
- radiative transfer-based relationships
- Complexity not necessarily better

Observation Capability

Frequency/wavelength:

- Visible/infrared
 - cloud delineation, cloud top properties
 - resolutions typically $\sim 1 \text{ km} (5 \text{ m} 4 \text{ km})$
- Passive microwave imagers/sounders
 - ~6–190 GHz
 - imagers=transparent, sounders=opaque
 - resolutions ~5–70 km, frequency/scan dependent
- Active microwave
 - 13, 35, 94 GHz
 - resolutions ~ 1-5 km

Retrieval capability

- Sensitivity of channel(s) to phenomenon requiring to be measured
- Availability of multiple channels
- Provision of external information
- Data availability (observations, sensors...)
- Latency (observation \rightarrow delivery)
- Application (hydrology, meteorology, severe storms...)
- Complexity (computing/data resources)

Surface Observations of Precipitation

Rain/snow gauges

- point-based spatial sampling
- temporal or quantised sampling

Types: drop counters; accumulation gauges; size/design

Weather radar

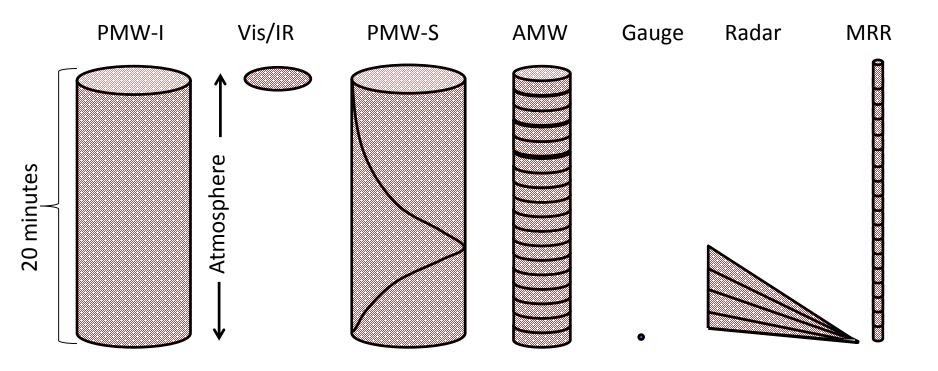
- spatial/volume sampling
- instantaneous observations

Types: scanning, vertically-pointing; measurement frequency

Microwave links

'line of sight' observations, ~15 minute samples

Surface & Satellite Observing Systems


	Instrument	Temporal	Spatial	Notes
Surface	Gauges: accumulation	Variable	Point	Temporal scale dependent upon observation frequency
	Gauges: Tipping Bucket	Quantised	Point	Quantisation of bucket (0.1 or 0.2 mm or 1/100") and data logger
	Distrometers	Instantaneous	Point	Individual drop measurements
	Micro rain radar	Instantaneous	Point	30 vertical levels
	Weather radar	Instantaneous Radial		Radial measurements of dBZ converted to a Cartesian grid
	Visible imagery	Instantaneous	1-4 km	Intermittent (LEO) 15 min sampling (GEO)
	Infrared imagery	Instantaneous	1-4 km	Intermittent (LEO) 15 min sampling (GEO)
Satellite	Passive Microwave Imagers	Column	5-25 km	Intermittent sampling (LEO) Resolution = frequency dependent
	Passive Microwave Sounders	Column	16-48 km	Intermittent sampling (LEO) Resolution = frequency/scan position depen.
	Active Microwave (radar)	Instantaneous	5 km	80 vertical levels; Intermittent sampling (LEO)

Surface & Satellite Observing Systems

Different systems observe things differently – spatially, temporally and physically

Validation of precipitation products

Different measuring techniques will inevitably provide different measures:

- Gauges 'surface' precipitation
- Radar backscatter from precipitation-sized particles
- Satellites cloud tops, columnar or column-weighted

Observations/measurements will differ in quality:

- Accuracy of measurement
- 'Noise' (e.g. anaprop, blockage, RFI, etc)
- Mechanical and technical issues
- Quality control procedures

Statistics

Lies, damn lies, and statistics

- Fundamental time/space relationship impacts upon statistical performance
- User requirements (e.g. instantaneous, climatological...)
- Proper match-ups temporally and spatially critical in achieving good statistical measures

Common statistical metrics

- Bias
 Estimated Observed
- Ratio
 Estimated/observed
- RMSE sqrt(estimates-observed)²
- Correlation
 e.g. Pearsons

- Rainrate dependent
- Retrievals should have zero bias w.r.t. calibration data
- Superfluous in bias-correction techniques
- Rainrate dependent
- Somewhat superfluous in bias-correction techniques
- Affected by spatial patterns and dynamic range of rainrates; instantaneous different to daily/monthly

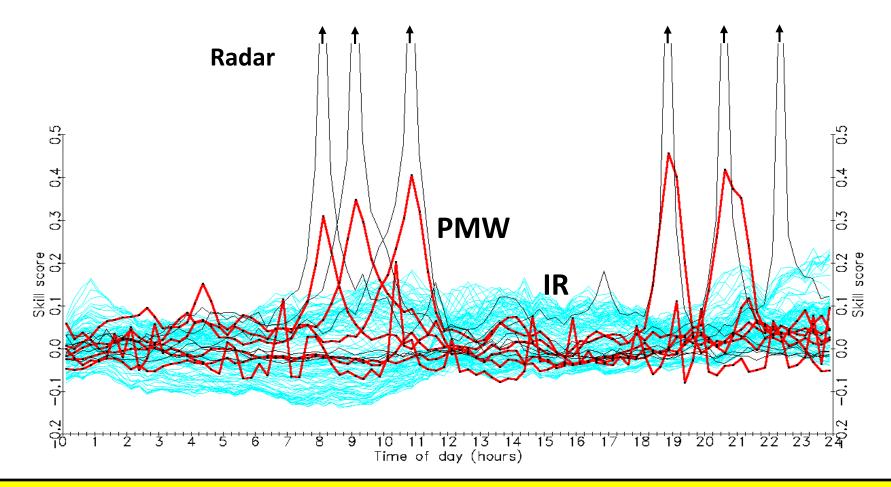
Categorical statistics

Based upon RR/NRR/RNR/NRNR counts

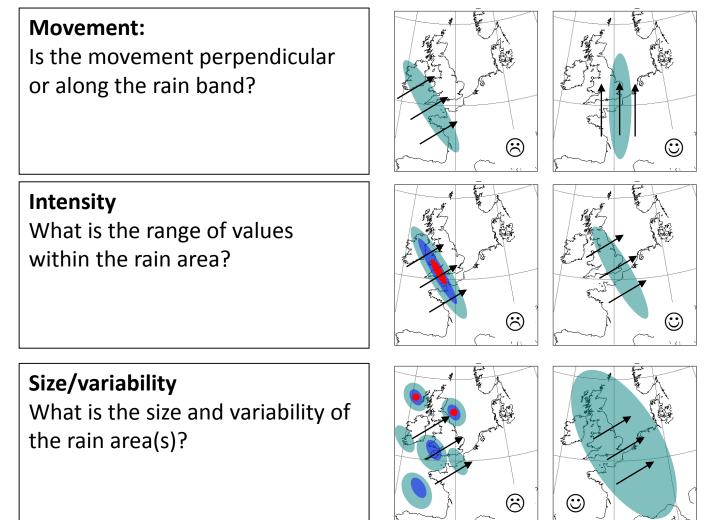
- Probability of Detection (POD)
- False Alarm Ratio (Rate) (FAR) Both affected by rain occurrence, form (area) of precipitation, geolocation issues
- Skill Score (SS)

variable thresholds can be used to determine intensity skill scores; but same issues as POD/FAR

Heidke Skill Score (HSS)

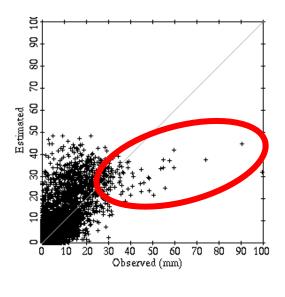

Similar to SS – but splits intensity into categories – either fixed groups, or dynamic by numbers in each group.

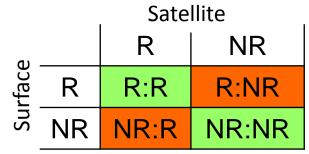
Time skill scores of rain retrievals


Statistical scores very dependent upon coincidence of observations

Statistics: regime dependency

Statistical success has as much to do with meteorology as the algorithms ability...




Cross-comparison of satellite/surface

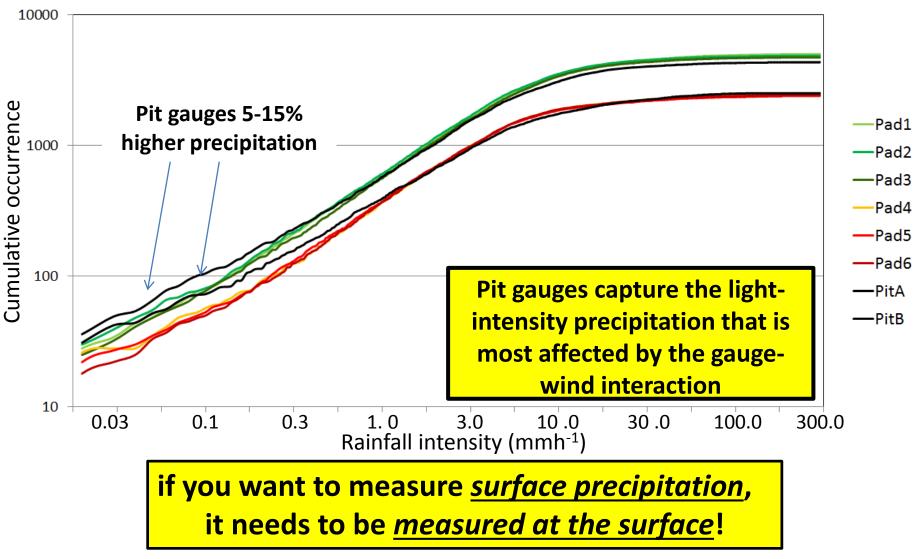
Spatial mapping of radar errors through comparison with satellite data sets

Not so much the 'agreements', but the disagreements

Through the generation of a contingency table of rain/no-rain and subsequent spatial mapping, errors can be identified.

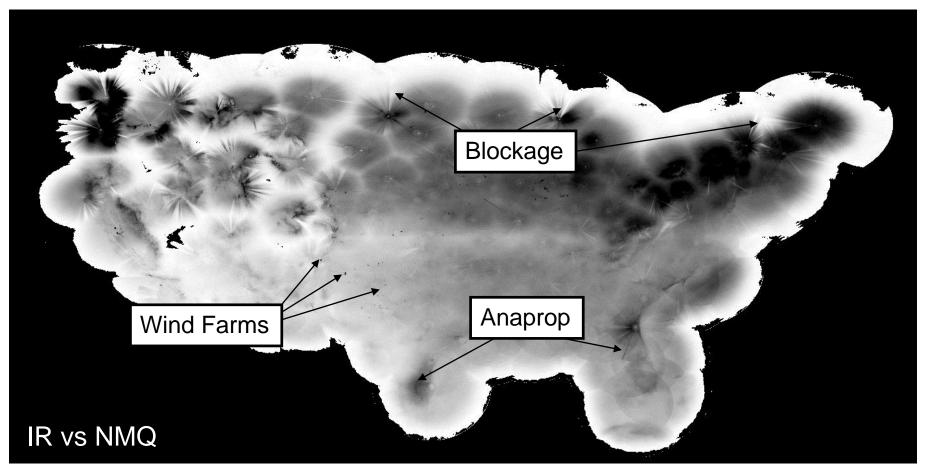
<u>'Improving' results</u>

- Spatial and temporal averaging greatly improves statistical performance (care needed in comparing different products)
- Temporal and spatial matching are essential to ensure similar quantities are being observed (e.g. column ≠ instantaneous measure)


Careful quality control of all data sets:

- Satellite products surface background issues...
- Gauges measurement at the 'surface'...
- Radar anaprop, beam blockage, beam elevation...

'Pad' vs 'Pit': Wallops gauges



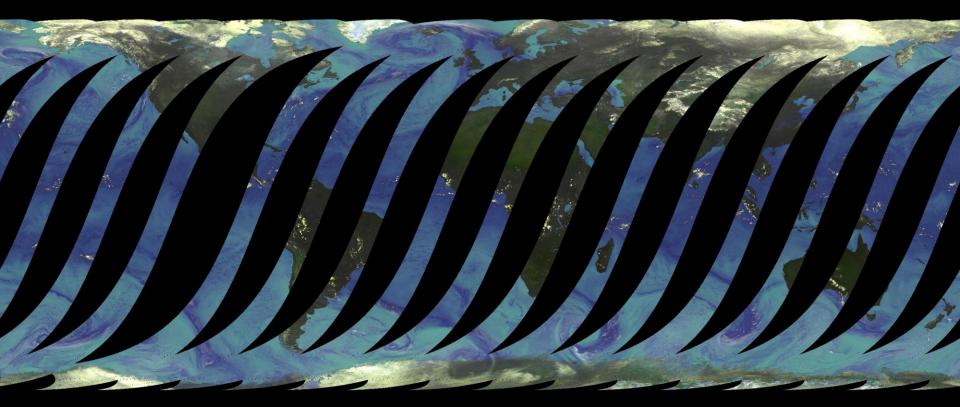
Radar artefacts

Thresholded IR data as a proxy for rain: radar over/under-estimation

User Impact

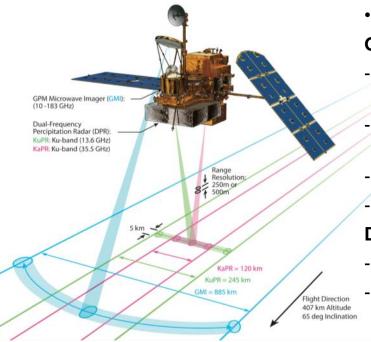
User requirements

- Often surface precipitation, vv atmospheric precipitation
- Latency vs accuracy
- Meteorology vs climatology
- Regional/global, surface type


E.g. hydrology:

- Amount falling within a given time (sampling)
- Basin morphology; shape, size, etc (resolution)
- Storm dynamics; inter-action of storm and basin characteristics (such as movement across a basin)

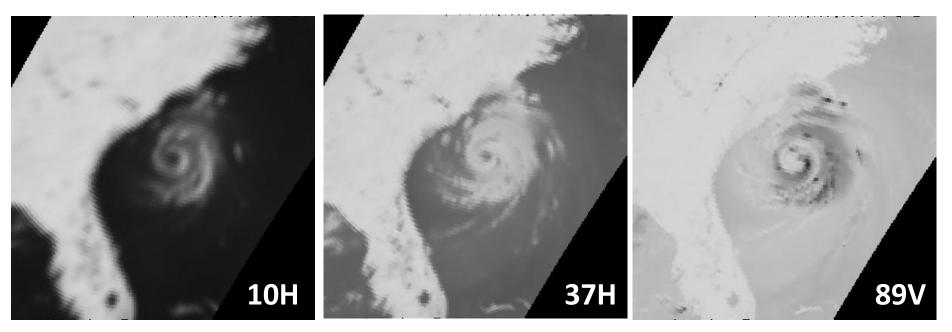
Latest results


31 October 2014 GPM extent 68N-68S vs *TRMM extent 38N-38S*

Core Observatory Geometry and Instruments

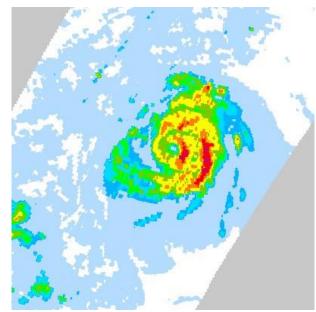
• Orbit: 407 km; 65 deg. inclination; 3-yr life, 5+ yr fuel **GPM Microwave Imager (GMI)**

- passive microwave radiometer with hot and cold calibration, includes novel calibration engineering
- precipitation (rain and snow) intensity and distribution over wide swath (880 km)
- High spatial resolution (as fine as ~5 km footprints)
- 166 kg, 162 W, 34.9 kbs data, 1.2 m ø reflector


Dual-frequency Precipitation Radar (DPR)

- KuPR similar to TRMM, KaPR added for GPM
- 3D precipitation structure, particle size distribution (PSD), intensity and distribution

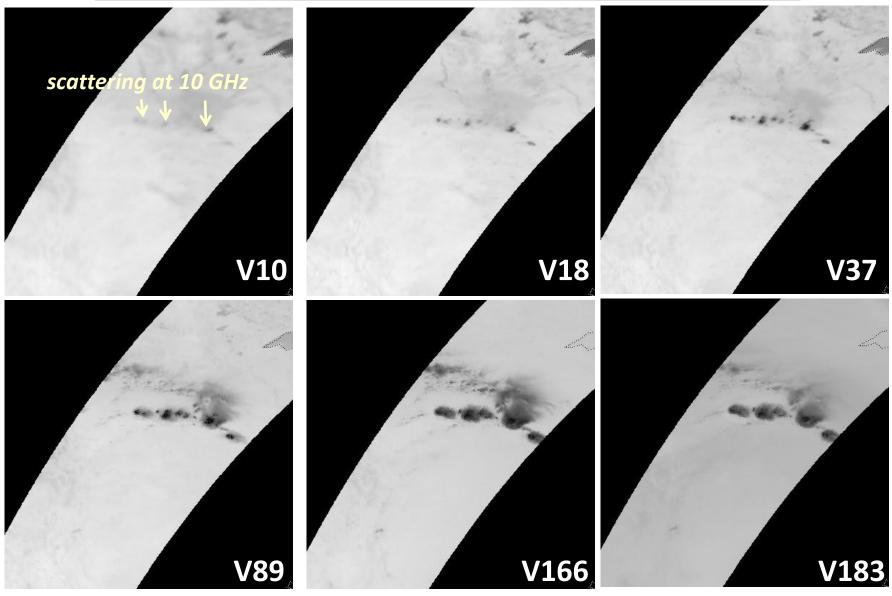
High spatial resolution (5 km horizontal; 250 m vertical)


	KuPR KaPR			GMI Frequencies	GMI Polarizations	
Frequency	13.597, 13.603 GHz	35.547, 35.553 GHz		10.65 GHz	V/H	
Min. detectable rainfall rate	0.5 mmh ⁻¹ 0.2 mmh ⁻¹			18.7 GHz	V/H	
				23.8 GHz	V	
Data Rate	< 109 kbps	< 81 kbps		36.5 GHz	V/H	
Mass	< 472 kg	< 336 kg < 344 W		89 GHz	V/H	
Power Consumption	< 446 W			166 GHz	V/H	
Size	2.5 imes2.4 imes0.6 m	1.2 imes 1.4 imes 0.7 m		183.31 GHz	Va/Vb (±3 & ±7)	

0.2-110 mmh⁻¹ & snow

Hurricane Arthur

First Atlantic hurricane of 2014 season Category 2 storm Captured by GMI on 3 July2014 at 11:38Z GPROF2014 retrieval (right)



<u>GMI – 20140603-S205848 Nebraska</u>

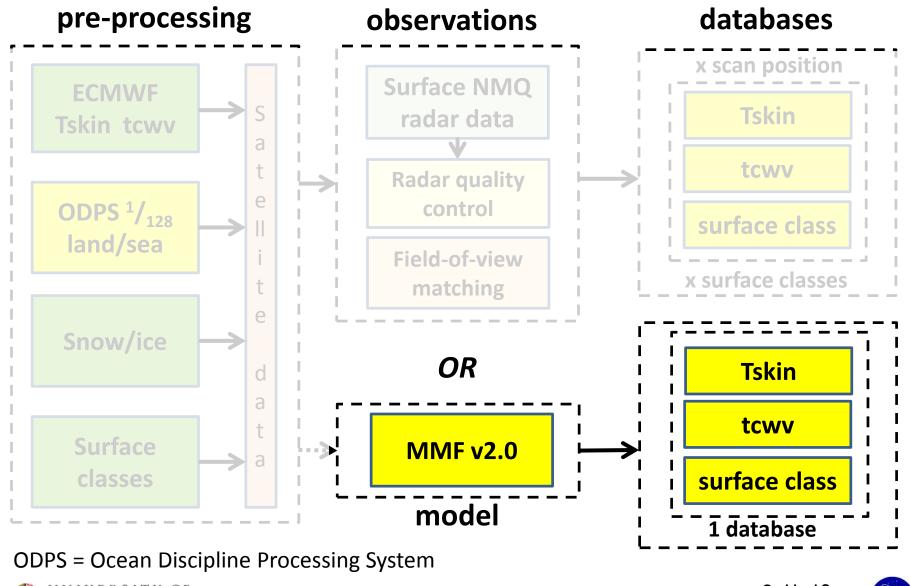
Constellation sensors

Channel (GHz)	6-7	10	19	23	31-37	50-60	89-91	150-167	183-190
GMI		10.65 V&H	18.7 V&H	23.8 V	36.5 V&H		89.0 V&H	165.6 V&H	183.31 V (x2)
AMSR-2	6.925/7.3 V&H	10.65 V&H	18.7 V&H	23.8 V&H	36.5 V&H		89.0 V&H		
SSMIS <i>x3</i>			19.35 V&H	22.235 V	37.0 V&H	50.3-63.28 V&H	91.65 V&H	150 H	183.31 V (x2)
MADRAS			18.7 V&H	23.8 V	36.5 V&H		89.0 V&H	157 V&H	
MHS <i>x4</i>							89.0 V	157 V	183.31 (x2) 190.31
ATMS				23.8	31.4	50.3-55.5 (x7)	88.2	165.5	183.31 (x5)
SAPHIR									183.31 (x6)
GMI		26	15	12	11		6	6	6
AMSR-2	65/58	42	22	26	12		5		
SSMIS			59	59	36	22	14	14	14
MADRAS			40	40	40		10	6	
MHS							17n	17n	17n
ATMS				74n	74n	32n	16n	16n	16n
SAPHIR									10n

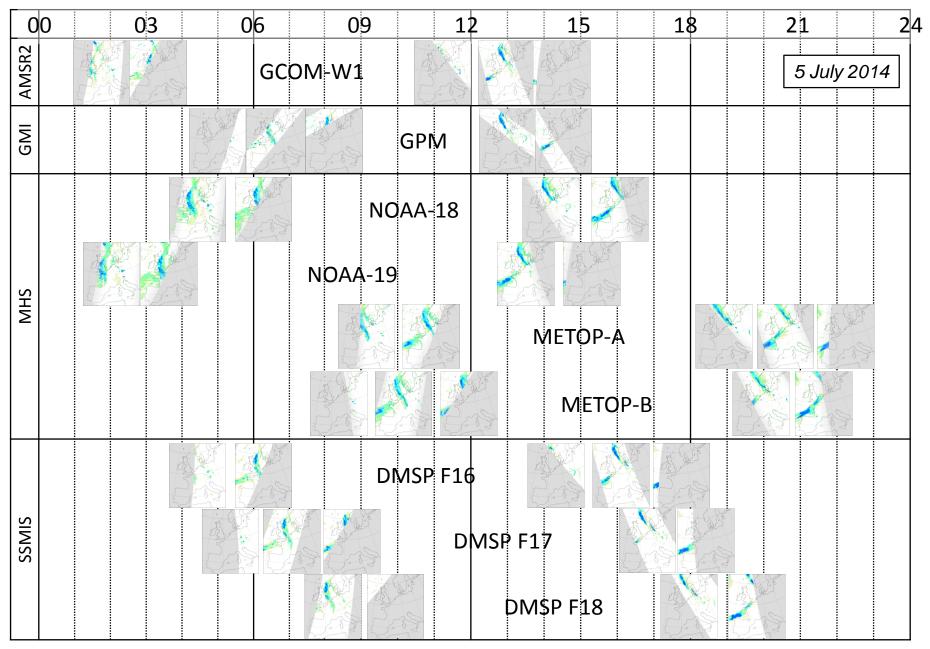
GPM constellation

MHS – MetOp/NOAA AMSR2 – GCOM-W SSMIS – DMSP SAPHIR – MT GMI – GPM TMI - TRMM

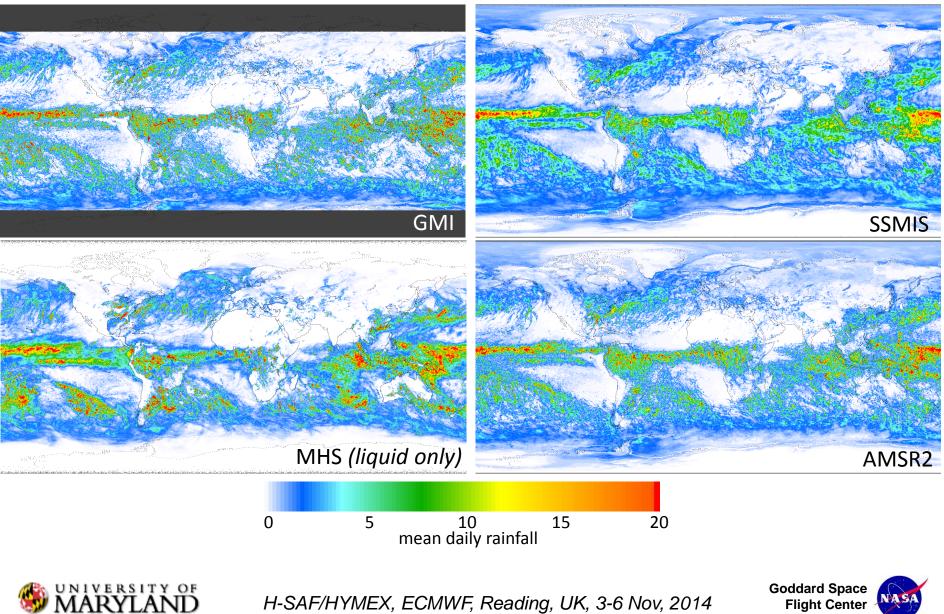
GPROF retrieval scheme

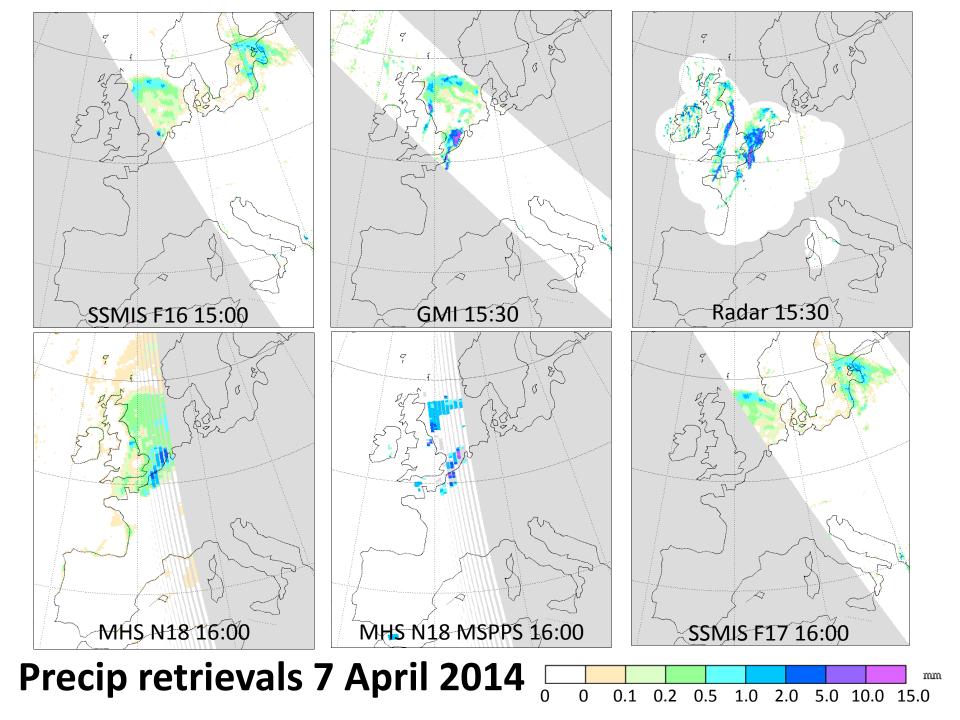

- GPROF (Goddard PROFiling) is a precipitation estimation scheme designed around a Bayesian retrieval using an a priori database from passive microwave observations.
- Retrievals constrained by model-generated surface temperature (T_{skin}) & total column water vapour (tcwv)
- Conical scanning radiometers (GMI, TMI, AMSR2, SSMIS) utilise an observational database, based upon surface/satellite and satellite observations include CloudSat, TRMM Precipitation Radar, US NMQ weather radar. Database divided into 15 surface types.
- Cross-track sensors (MHS, *ATMS, SAPHIR*) utilise a database generated by the MMF model, adjusted to GMI.

Creating GPROF cross-track databases

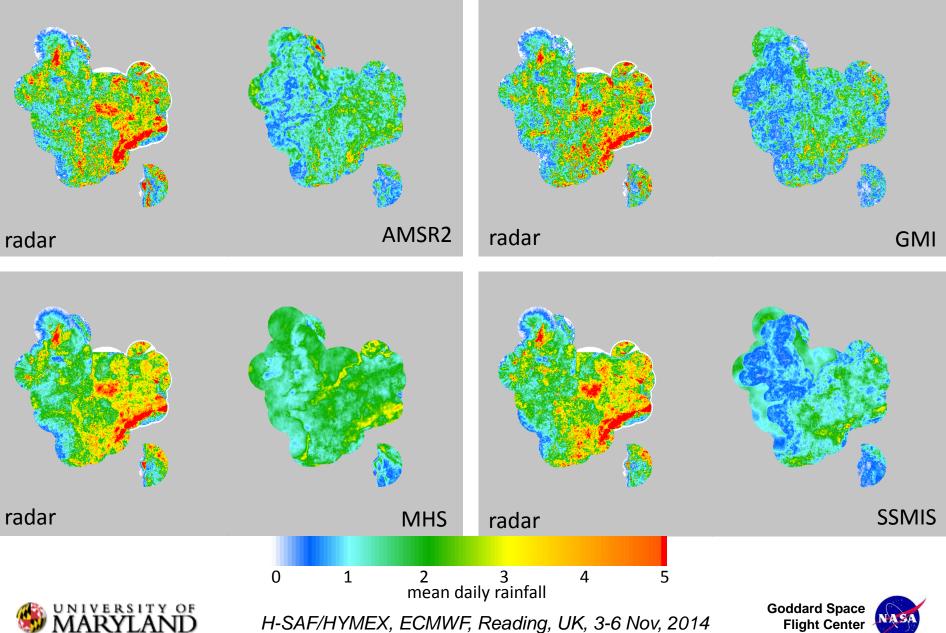

H-SAF/HYMEX, ECMWF, Reading, UK, 3-6 Nov, 2014

ARYLAI



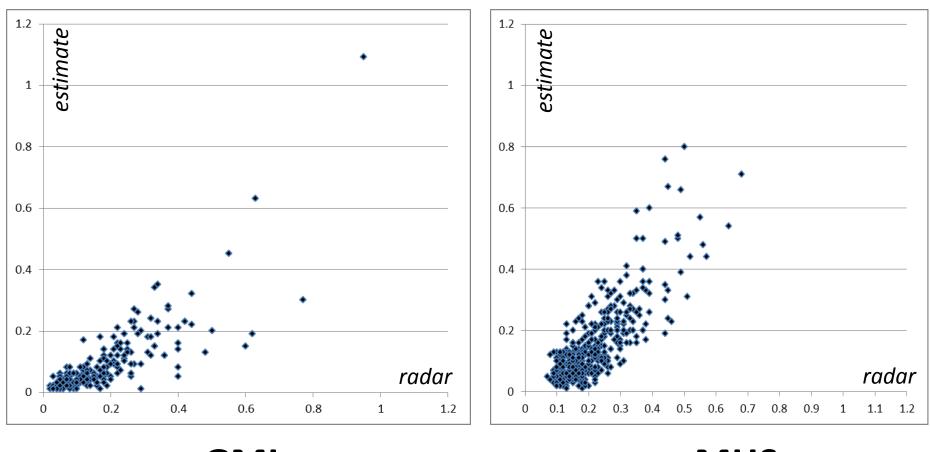


GPM constellation, Western Europe



Global retrievals – April 2014

Accumulation Apr-Sep 2014


	Correlation: Western Europe													
					Ir	nstantar	neous (15	-minute	2)					
G	GMI		MHS nadir			MHS edge			SSMIS			AMSR		
5	5 km		15	km		15	km		15 km			15 km		
				Only incl	uding tho	se occasio	ons with >10	0 radar ce	ls with > 1	.mm/hr				
Bin	Frequency	%	Bin	Frequency	%	Bin	Frequency	%	Bin	Frequency	%	Bin	Frequency	%
-1	L 0	0.0	-1	. 0	0.0	-1	0	0.0	-1	0	0.0	-1	0	0.0
-0.9	9 0	0.0	-0.9	0	0.0	-0.9	0	0.0	-0.9	0	0.0	-0.9	0	0.0
-0.8	3 0	0.0	-0.8	0	0.0	-0.8	0	0.0	-0.8	0	0.0	-0.8	0	0.0
-0.7	7 0	0.0	-0.7	0	0.0	-0.7	0	0.0	-0.7	0	0.0	-0.7	0	0.0
-0.6		0.0	-0.6		0.0	-0.6		0.0	-0.6		0.0	-0.6		0.0
-0.5		0.0	-0.5		0.0	-0.5		0.0	-0.5		0.0	-0.5		0.0
-0.4		0.0	-0.4	-	0.0	-0.4	-	0.0	-0.4		0.0	-0.4		0.0
-0.3		0.0	-0.3		0.0	-0.3		0.0	-0.3	0	0.0	-0.3		0.0
-0.2		0.0	-0.2		0.0	-0.2		0.0	-0.2		0.0	-0.2		0.0
-0.1		0.0	-0.1		0.0	-0.1		0.0	-0.1	0	0.0	-0.1		0.0
-1.4E-16		0.0	-1.4E-16		0.0	-1.4E-16		0.0	-1.4E-16		0.0	-1.4E-16		0.0
0.1		1.6	0.1		0.0	0.1		0.0	0.1		0.0	0.1		1.4
0.2		2.4	0.2		0.0	0.2		1.0	0.2		1.4	0.2		2.0
0.3		6.5	0.3		0.6	0.3		1.4	0.3		4.9	0.3		5.2
0.4	-	19.4	0.4		7.2	0.4		5.3	0.4	103	13.3	0.4		15.5
0.5	-	22.6	0.5		15.1	0.5		11.6	0.5	173	22.4	0.5		20.9
0.6		26.6	0.6		22.9	0.6		26.1	0.6		27.8	0.6		26.1
0.7		16.9	0.7		38.6	0.7		30.9	0.7	159	20.6	0.7		17.2
0.8		3.6	0.8		15.1	0.8		19.3	0.8		8.5	0.8		10.0
0.9		0.4	0.9		0.6	0.9		4.3	0.9		0.9	0.9		1.7
1		0.0	1		0.0	1		0.0	1		0.0	1		0.0
More	0	248	More	0	166	More	0	207	More	0	772	More	0	349

Mean rain rates per case

GMI (Observational database)

Western Europe Apr-Sep 2014

MHS (MMF model database)

Conclusions

- Do not forget that precipitation is real not just numbers
- "convergence" is not necessarily good there are good fundamental reasons why measurements differ
- Careful quality control of data is critical
- Statistics need to used with caution don't forget to look at plots of data (!)
- GPM data is flowing all available online together with constellation mission data
- Retrievals are looking good latest MHS retrievals should be out very shortly

