



## Hydrological validation of H–SAF precipitation products on Polish basins from different regions (lowland, upland, mountainous catchments)

Maurycy Ciupak, Marcin Dominikowski, Michał Kasina, Michał Ziemski Hydrological Forecasting Office in Krakow Institute of Meteorology and Water Management – National Research Institute

ECMWF/ H-SAF and HEPEX Workshops on coupled hydrology



# The main goals of hydrological validation



#### The main goals of HV

#### OE 5100

Product interfacing and utilization improvement

Make software for blended products

Perform the analysis of possible product utility for hydrological tasks

Development of tools to assimilate soil moisture and snow cover products to hydrological models

Development of tools (software) for data format conversion acceptable by hydrological models

Sensitivity analysis – influence of each product on final output data



#### OE 5200

Impact studies and hydrological validation

Hydrological validation of Products

Satelital data assesment and model calibration

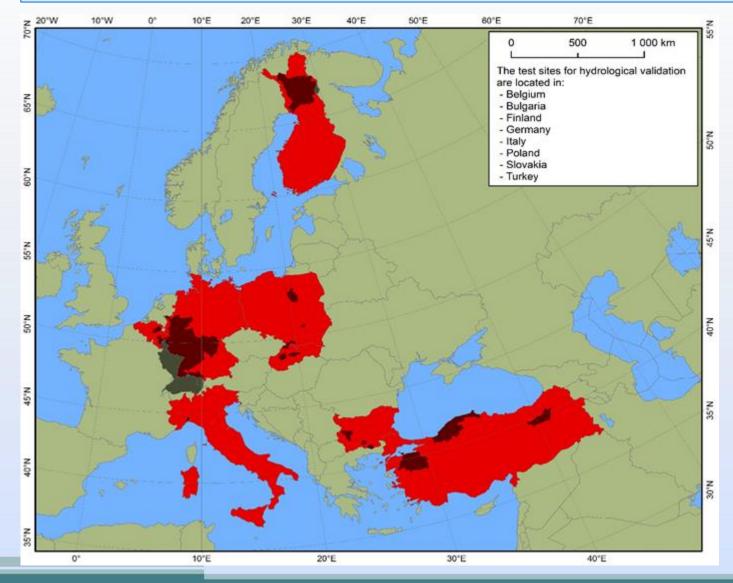
Case studies



#### **Hydrological Validation**

#### **Hydrological validation** of operational or preoperational H-SAF products:

- PR: H03; H04; H05
- SM: H08; H14
- SN: H10; H12; H13


#### Results are presented in Hydrological Impact Validation Report (HVR)



#### Validation Teams, test sites, models

| Country  | Test site         | Hydrological model                                                                               |  |  |  |  |
|----------|-------------------|--------------------------------------------------------------------------------------------------|--|--|--|--|
| Belgium  | Demer-Scheldt     |                                                                                                  |  |  |  |  |
|          | Ourthe-Meuse      | SCHEME (SCHEldt and model)                                                                       |  |  |  |  |
|          | Iskar River       | Artificial Neural Networks (ANN)                                                                 |  |  |  |  |
| Bulgaria | Varbica river     | Mike-11/NAM (Nedbør-Afstrømmings Model)                                                          |  |  |  |  |
|          | Chepelarska       | and Isba-Modcou model                                                                            |  |  |  |  |
| Finland  | Ounasjoki         | Variable Infiltration Capacity (VIC) Model version 4.1.2f                                        |  |  |  |  |
| Germany  | Rhine             | HBV (Hydrologiska Byrans Vattenbalansavdelning model),<br>LARSIME (Large Area Simulation Model ) |  |  |  |  |
| Italy    | Orba              | Continuum Model                                                                                  |  |  |  |  |
|          | Soła              |                                                                                                  |  |  |  |  |
|          | Raba              | HBV<br>(Hydrologiska Byrans Vattenbalansavdelning model),                                        |  |  |  |  |
| Poland   | Czarna            |                                                                                                  |  |  |  |  |
|          | and Lagowianka    | SRM                                                                                              |  |  |  |  |
|          | Wkra              |                                                                                                  |  |  |  |  |
|          | Nitra             | Hunn NAM (Hunn and Nadh an Afatu annin an Madal)                                                 |  |  |  |  |
| Slovakia | Kysuca            | on-NAM (Hron and Nedbør-Afstrømmings Model)                                                      |  |  |  |  |
|          | Hron              | HBV (Hydrologiska Byrans Vattenbalansavdelning model)                                            |  |  |  |  |
| Turkey   | Susurluk          | HEC-HMS (The Hydrologic Engineering Center – Hydrologic                                          |  |  |  |  |
|          | Western Black Sea | Modeling System)                                                                                 |  |  |  |  |
|          | Upper Euphrates   | SRM (Snowmelt Runoff Model)                                                                      |  |  |  |  |
|          | Kırkgöze          | HBV (Hydrologiska Byrans Vattenbalansavdelning model)                                            |  |  |  |  |

#### Validation Teams, test sites, models



Support to Operational Hydrology and Water Management

**HSAF** 



#### Status of validation

| Country  |      | Product |     |     |     |     |     |     |     |
|----------|------|---------|-----|-----|-----|-----|-----|-----|-----|
|          |      | H03     | H04 | H05 | H08 | H14 | H10 | H12 | H13 |
| Belg     | jium | -       | -   | YES | -   | -   | -   | -   | -   |
| Bulgaria |      | -       | -   | YES | -   | YES | -   | -   | -   |
| Finland  |      | -       | -   | -   | -   | -   | -   | -   | YES |
| Germany  |      | -       | -   | YES | ~   | ~   | ~   | ~   | ~   |
| Italy    |      | YES     | -   | YES | YES | YES | -   | -   | -   |
| Poland   |      | YES     | YES | YES | -   | ~   | ~   | ~   | ~   |
| Slovakia |      | YES     | YES | YES | YES | -   | -   | -   | -   |
| Turkey   | ITU  | -       | -   | YES | -   | -   | -   | -   | -   |
|          | AU   | -       | -   | -   | -   | -   | YES | ~   | YES |
| Hungary  |      | -       | -   | -   | -   | -   | -   | -   | ~   |

| -   | not validated        |  |  |
|-----|----------------------|--|--|
| ~   | validation in future |  |  |
| YES | validated            |  |  |



## Validation period and products



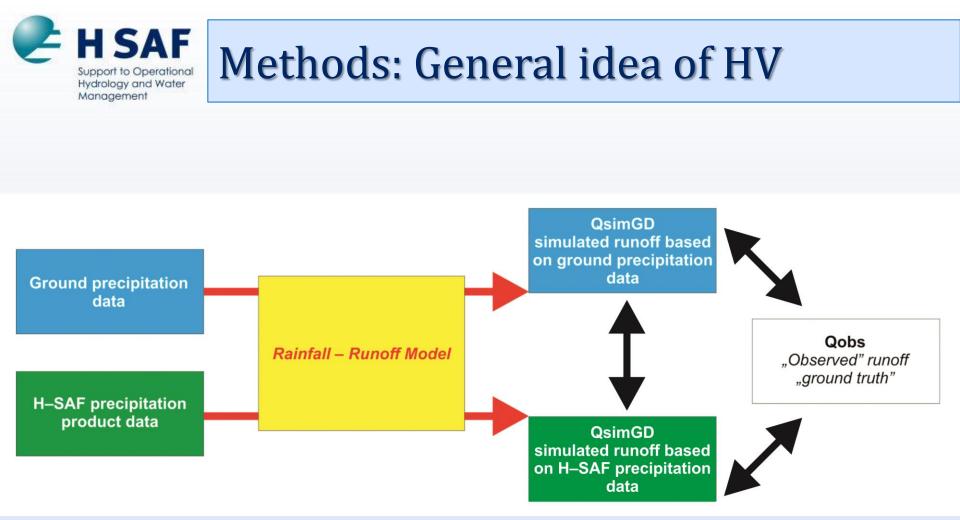




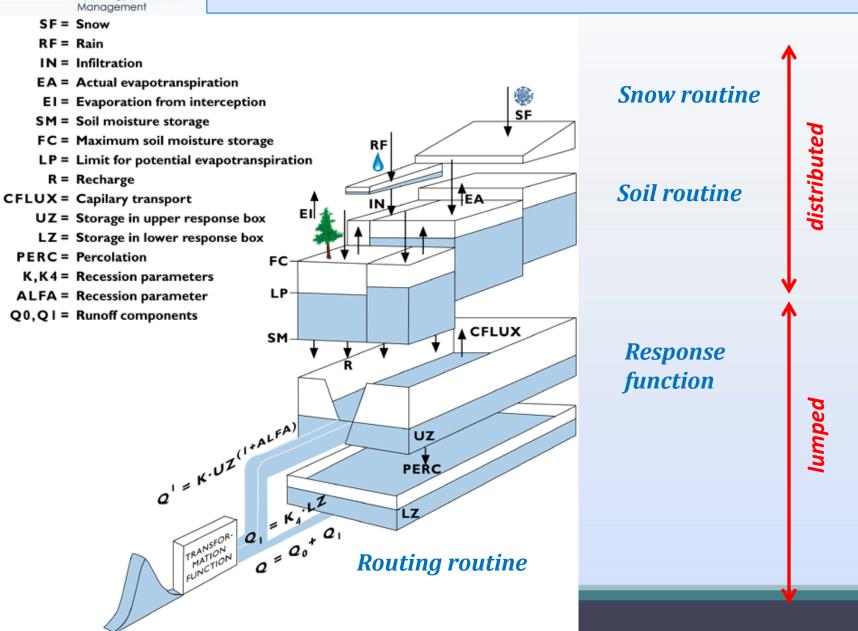
## Precipitation products

| Product |                                                                                  | Resolu<br>tion | Cycle                                                                     |
|---------|----------------------------------------------------------------------------------|----------------|---------------------------------------------------------------------------|
| H03     | Precipitation rate at ground by GEO/IR supported by LEO/MW                       | ~ 8 km         | 15 min                                                                    |
| H04     | Precipitation rate at ground by LEO/MW supported by GEO/IR (with flag for phase) | ~ 8 km         | 3 hours                                                                   |
| H05     | Accumulated precipitation at ground by blended MW and IR                         | ~ 8 km         | Each 3 hours:<br>MW+IR integrated<br>over the previous 3,<br>6, 12 and 24 |



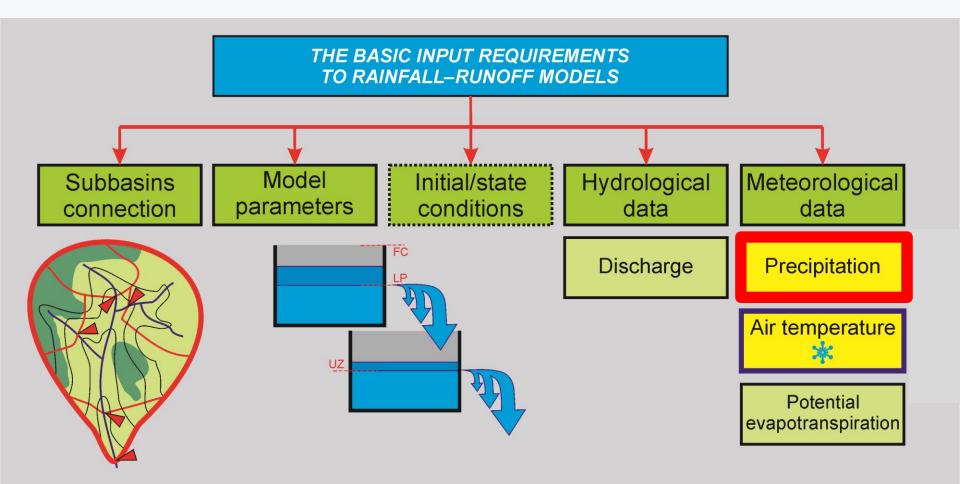

## Methods




#### **Methods: General idea of HV**

#### How to define "*ground truth"*?




















#### **Precipitation**

- Weighted mean
- Elevation zones

#### **Temperature**

- Weighted mean
- Elevation zones

#### Data for stations The time step is ONE HOUR

#### **Potential evaporation\***

- Penman-Monteith/Thornthwaite equation
- Usually long-term monthly mean values

**Discharge observations** are used to calibrate the model, and to verify and correct the model before a runoff forecast.



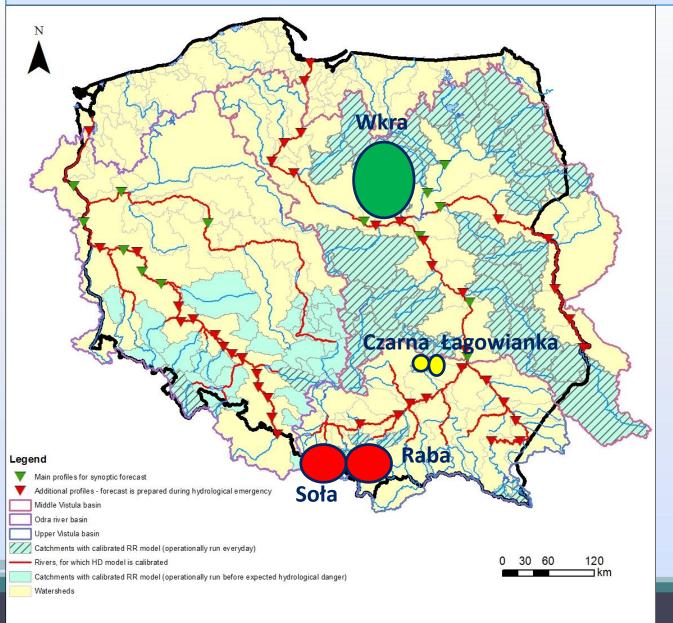


#### **Calibration** of rainfall-runoff model (using historical, long time series of ground data)

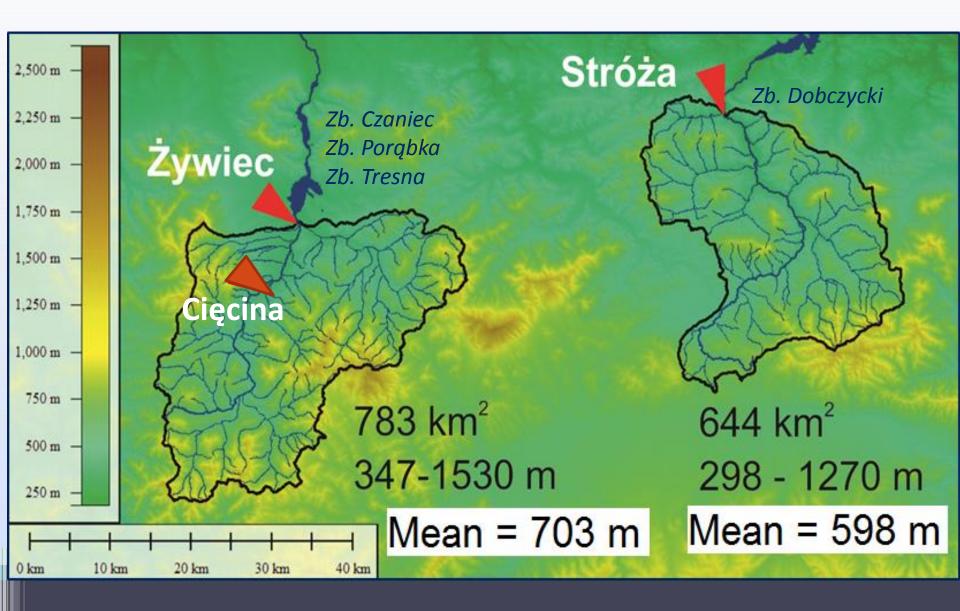
#### Validation

- runoff simulation using precipitation ground data as an input
- runoff simulation using satellite precipitation product as an input

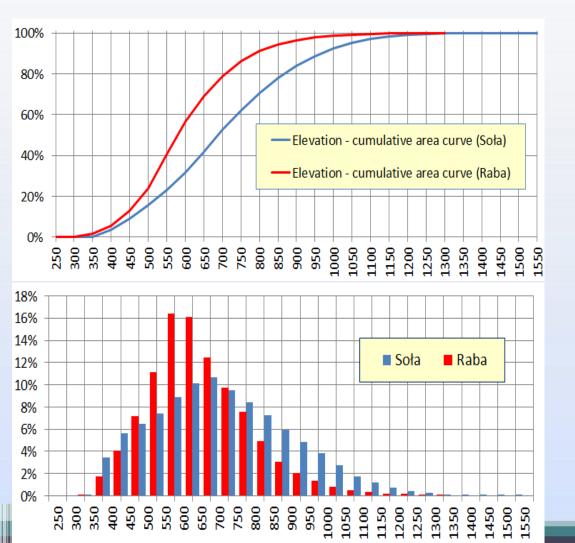





- Results for each month and for the whole period
- Comparison the obtained run-offs with the measurements
- Evaluations of the H–SAF products were performed, in terms of discharges, by the calculation of the Nash–Sutcliffe model efficiency coefficient, the correlation coefficient, the RMSE and ME and MAE.
- Results: graphs, statistics scores



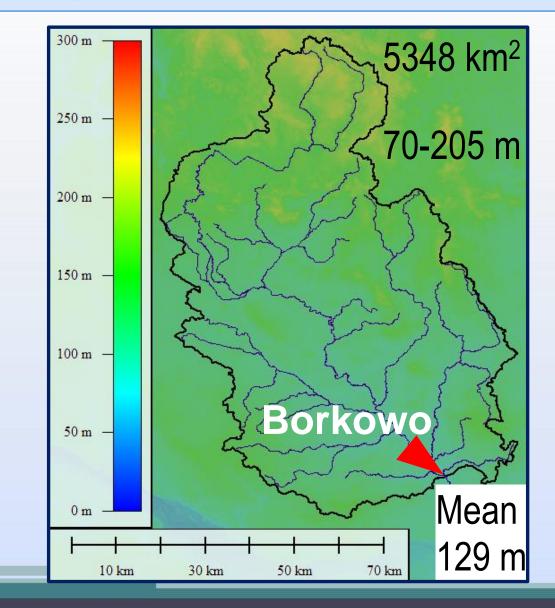


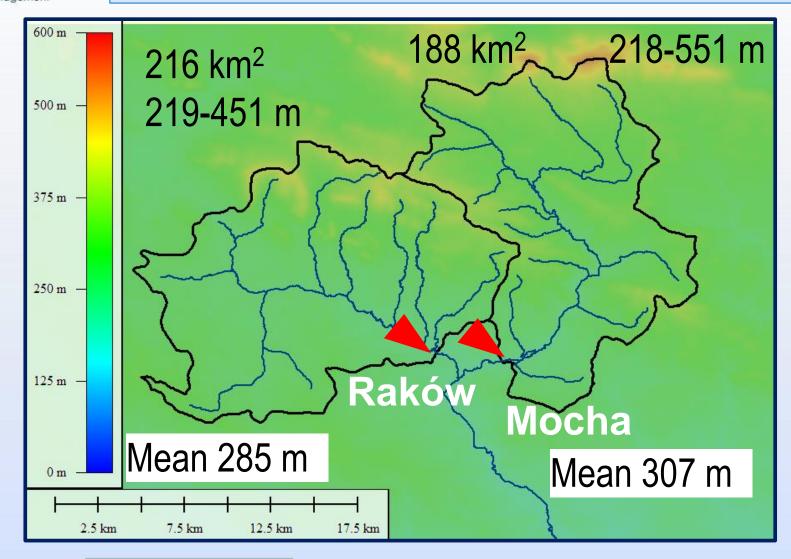






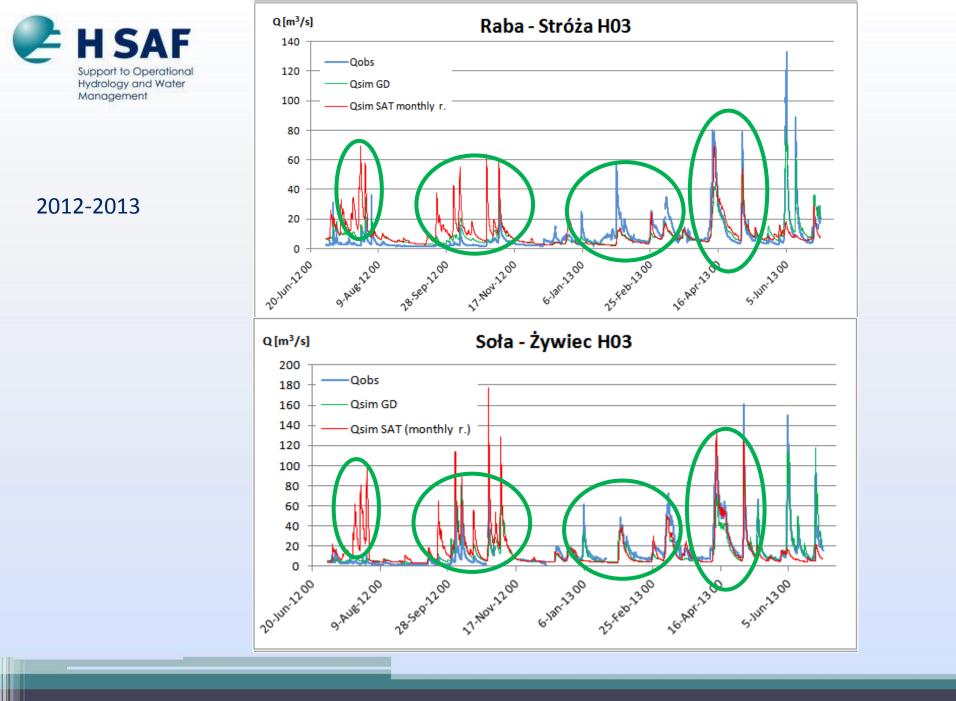


HSAF Support to Operational Hydrology and Water Management

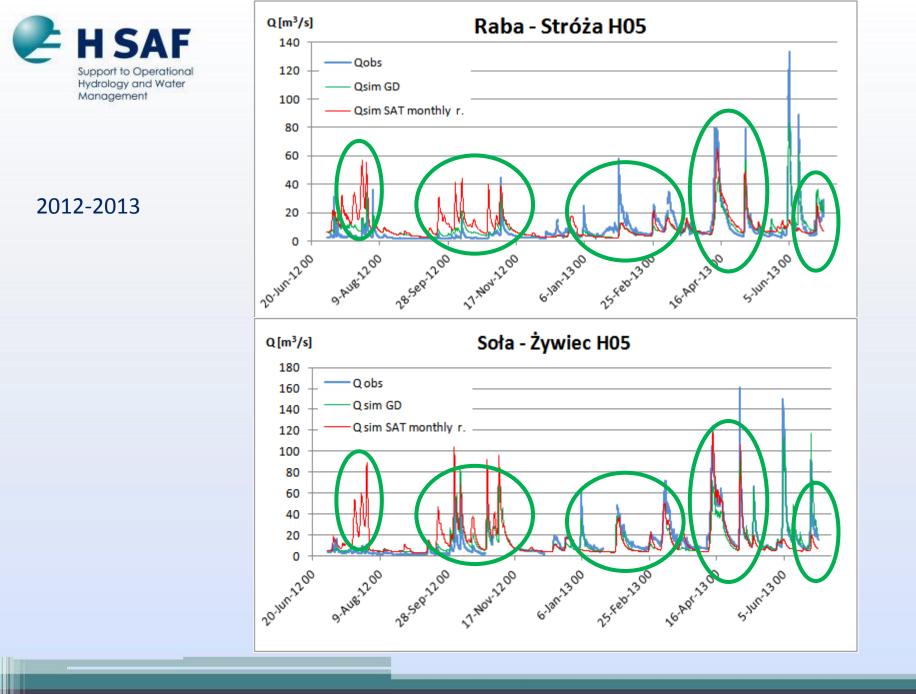


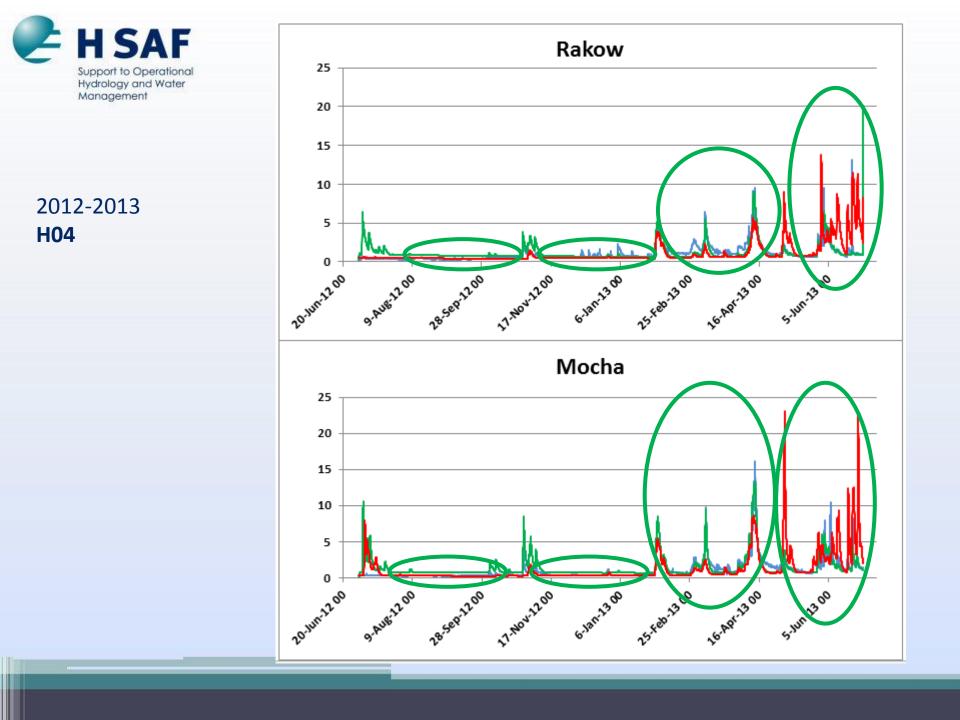



HSAF Support to Operational Hydrology and Water Management

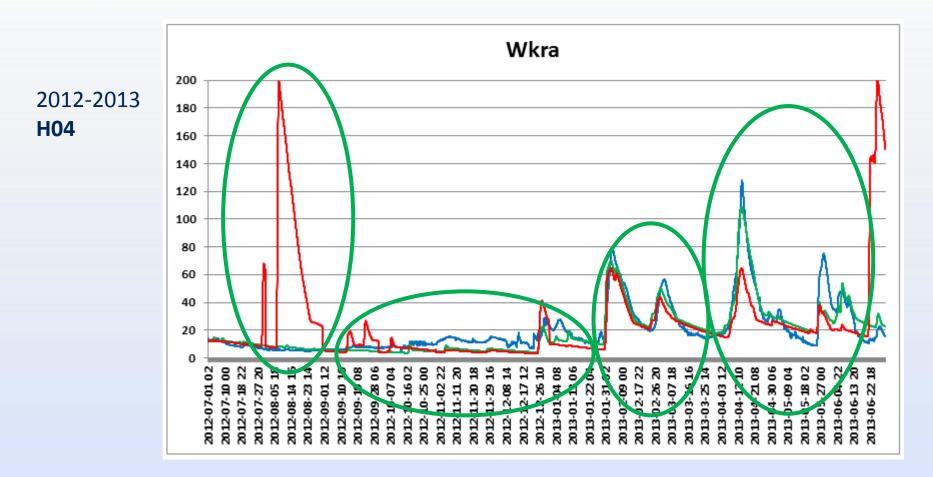




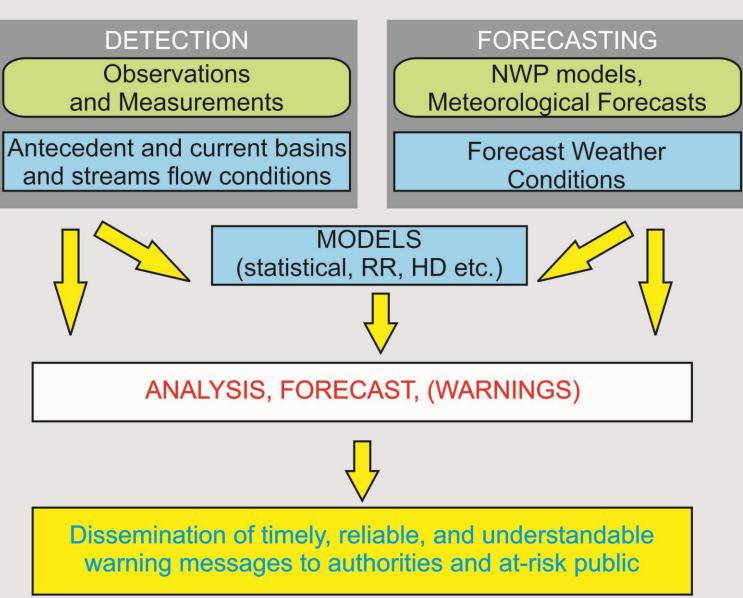




Results



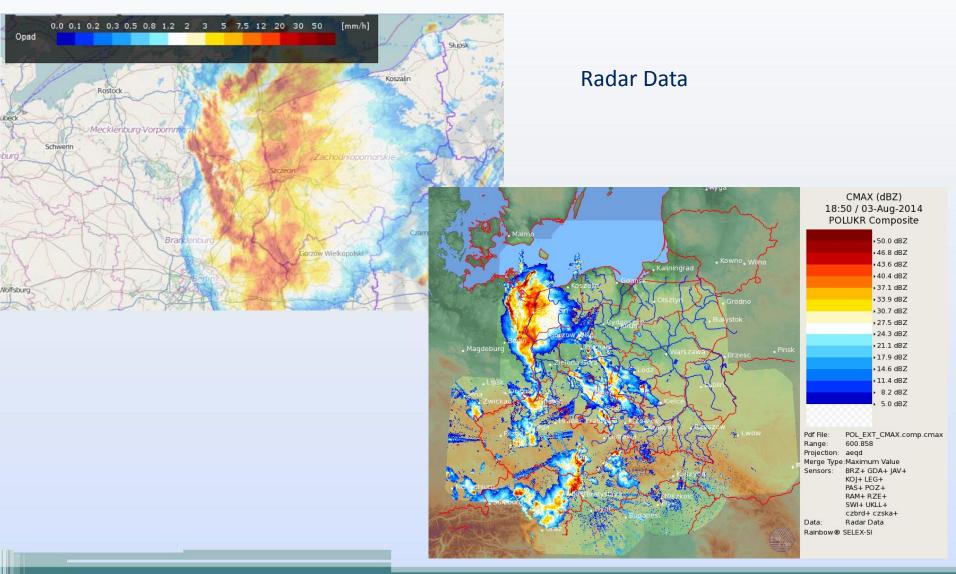




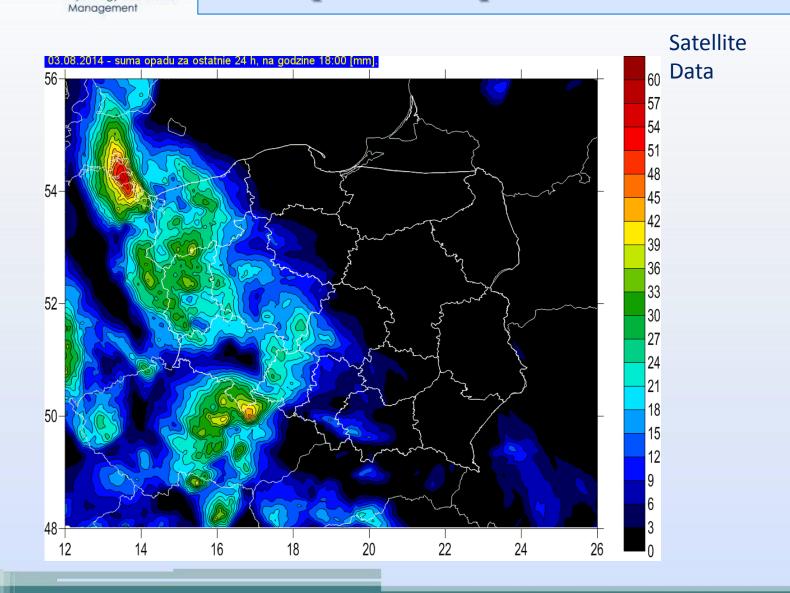






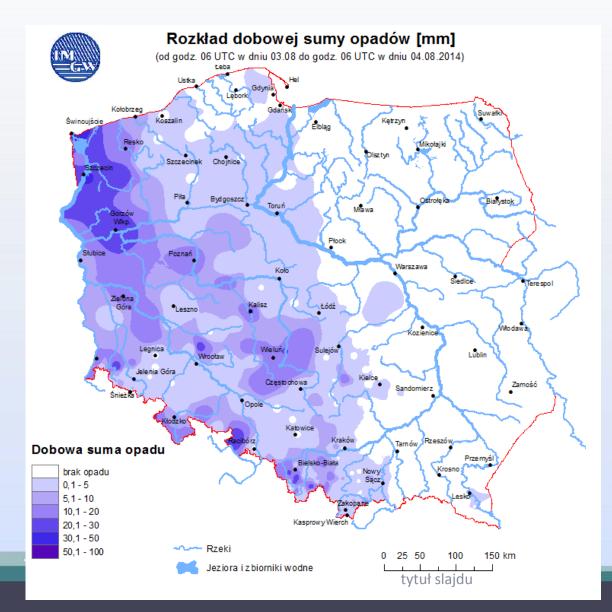


## H-SAF products in Operational Hydrology






HSAF

Support to Operational Hydrology and Water Management




tytuł slajdu



**HSAF** 

Support to Operational Hydrology and Water



HSAF

Support to Operational Hydrology and Water Management

#### Rain gauges



## **Bias-Correction**



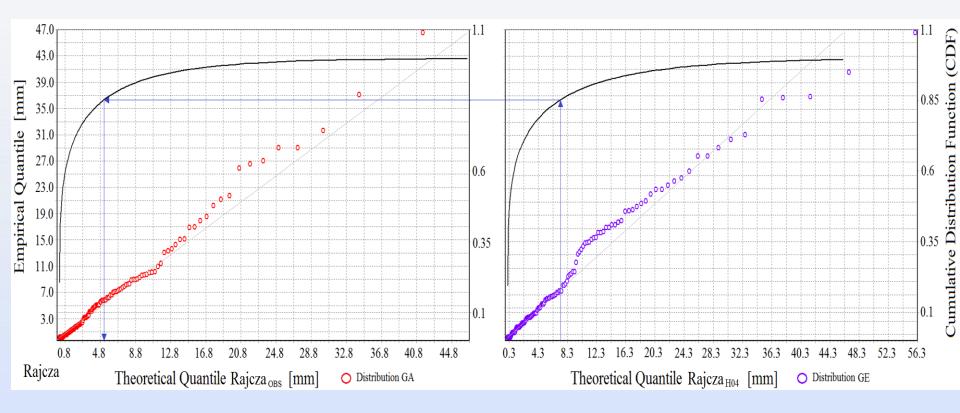
### **BIAS-correction**

Satellite precipitation products have systematic errors called **bias**, which need to be corrected since the biases can affect the hydrological processing in the mathematical models...

• Problem to solve:

(...) to transform precipitation derived from H-SAF, to the observed precipitation




- based on simple changes (Lehner et al., 2006), DELTA method
- parametric transformation (Piani et al., 2010; Maraun et al., 2013; Rojas et al., 2011),
- nonparametric transformation (Wood et al., 2004; Boé et al., 2007; Bennet et al., 2011),
- distribution derived transformation (Sharma, 2007; Salvi et al., 2011; Kurnik et al., 2012).



(...) to find the optimum function, that maps the modeled variable  $P_{\rm MOD}$  from H-SAF precipitation Product in such way that a new distribution equals the distribution of the observed variable  $P_{\rm OBS}$ , i.e.,

 $P_{\rm OBS} = f(P_{\rm MOD})$ 







Density and quantile functions for selected probability distributions

Sets of equations obtained by MLM method for GA, GE probability distributions

|    | gamma distribution |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|----|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|    | GA                 | $f(x) = \frac{(x - \varepsilon)^{\lambda - 1}}{\alpha^2 \Gamma(\lambda)} \exp\left(-\frac{x - \varepsilon}{\alpha}\right) \qquad \qquad \lambda > 0 \text{ - shape,} \\ \alpha > 0 \text{ - scale,} \\ \varepsilon \ge 0 \text{ - lower} \\ \text{left-side bound} \\ \varepsilon \le X \le +\infty \end{aligned}$                                                                                                                                                                                            |  |  |  |  |  |
|    |                    | generalized exponential distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
| s. | GE                 | $f(x) = \alpha \lambda \exp(-(x-\varepsilon)\lambda)[1-\exp(-(x-\varepsilon)\lambda)]^{\alpha-1}$ $x_p = \varepsilon - \frac{1}{\lambda} \ln \left[1-(1-p)^{\frac{1}{\alpha}}\right]$ $\alpha > 0 - \text{ shape}$ $\lambda > 0 - \text{ scale}$ $\varepsilon \ge 0 - \text{ lower}$ $\text{left-side bound}$ $\varepsilon \le X \le +\infty$                                                                                                                                                                 |  |  |  |  |  |
|    | GA                 | Initial values: $\alpha = 1,0, \ \lambda = \left(3,0-c + \left[(c-3)^2 + 24c\right]^{\frac{1}{2}}\right)/12c,$<br>where: $\alpha = \sum_{i=1}^{N} (x_i - \varepsilon), \ b = \sum_{i=1}^{N} \ln(x_i - \varepsilon), \ c = \ln \frac{\alpha}{N} - \frac{b}{N}$<br>$\begin{cases} \ln \lambda - \psi(\lambda) = \ln\left(\frac{1}{N}\sum_{i=1}^{N} (x_i - \varepsilon)\right) - \frac{1}{N}\sum_{i=1}^{N} \ln(x_i - \varepsilon) \\ \alpha = \frac{1}{\lambda N}\sum_{i=1}^{N} (x_i - \varepsilon) \end{cases}$ |  |  |  |  |  |
|    | GE                 | $\frac{1}{N} = \left[\frac{1}{N}\sum_{i=1}^{N} (x_i - \varepsilon - \overline{x})^2\right]^{-\frac{1}{2}}$ $\frac{N}{\lambda} = \left[\frac{1}{N}\sum_{i=1}^{N} (x_i - \varepsilon - \overline{x})^2\right]^{-\frac{1}{2}} + 1 \right] * \left[\sum_{i=1}^{N} \frac{(x_i - \varepsilon)\exp(-\lambda(x_i - \varepsilon))}{1 - \exp(-\lambda(x_i - \varepsilon))}\right] - \sum_{i=1}^{N} (x_i - \varepsilon) = 0$ $\alpha = -\frac{N}{\sum_{i=1}^{N} \ln[1 - \exp(-\lambda(x_i - \varepsilon))]}$             |  |  |  |  |  |



# Goodness-of-fit tests for probability distributions of random variables $P_{\text{OBS}}$ , $P_{\text{H03}}$ , $P_{\text{H04}}$ and $P_{\text{H05}}$

| Kołmogorow-<br>Smirnow (K-S) | $\begin{split} D_N &= \max_{1 \leq i \leq N} (\hat{\delta}_i), \text{ where: } \hat{\delta}_i = \max \left[ \frac{i}{N} - F_0 (x_i; \hat{\theta}), F_0 (x_i; \hat{\theta}) - \frac{i-1}{N} \right], \\ N - \text{ size of random sample,} \\ F_0 (x_i; \hat{\theta}) \text{ theoretical cumulative distribution,} \\ \hat{\theta} \text{ - vector of parameters.} \end{split}$ |
|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Anderson-Darling<br>(A-D)    | $A_{N}^{2} = -N - \frac{1}{N} \sum_{i=1}^{N} \left\{ (2i-1) \ln F_{0}(x_{i};\hat{\theta}) + (2N+1-2i) \ln \left(1 - F_{0}(x_{N+1-i};\hat{\theta})\right) \right\}$                                                                                                                                                                                                             |
| Liao-Shimokawy<br>(L-S)      | $L_N = \frac{1}{\sqrt{N}} \sum_{i=1}^N \frac{\max\left[\frac{i}{N} - F_0\left(x_i;\hat{\theta}\right), F_0\left(x_i;\hat{\theta}\right) - \frac{i-1}{N}\right]}{\sqrt{F_0\left(x_i;\hat{\theta}\right)} \left[1 - F_0\left(x_i;\hat{\theta}\right)\right]}$                                                                                                                    |
| Kuiper (K)                   | $V_{N} = \max_{1 \le i \le N} \left( \hat{\delta}_{i}^{+} \right) + \max_{1 \le i \le N} \left( \hat{\delta}_{i}^{-} \right), \text{ gdzie: } \hat{\delta}_{i}^{+} = \max\left[ \frac{i}{N} - F_{0}\left(x_{i};\hat{\theta}\right) \right],$ $\hat{\delta}_{i}^{-} = \max\left[ F_{0}\left(x_{i};\hat{\theta}\right) - \frac{i-1}{N} \right]$                                  |



#### • Statistical charactristics

| Character            | intin | Zywiec | Zywiec |
|----------------------|-------|--------|--------|
| Characteristic       |       | OBS    | MOD    |
|                      | H03   | 3.277  | 3.936  |
| Skewness             | H04   |        | 4.371  |
|                      | H05   |        | 3.608  |
|                      | H03   |        | 21.390 |
| Kurtosis             | H04   | 12.529 | 26.283 |
|                      | H05   |        | 17.036 |
| Standard             | H03   |        | 6.375  |
| Deviation            | H04   | 3.513  | 5.928  |
| [mm]                 | H05   |        | 6.174  |
| Varianaa             | H03   | 12.343 | 40.637 |
| Variance             | H04   |        | 35.147 |
| [(mm) <sup>2</sup> ] | H05   |        | 38.116 |
| Arithme-             | H03   | 1.693  | 2.918  |
| tic                  | H04   |        | 2.641  |
| Mean                 | H05   |        | 2.919  |
| Median               | H03   | 0.200  | 0.300  |
| [mm]                 | H04   |        | 0.100  |
| լոույ                | H05   |        | 0.100  |



Results of goodness-of-fit tests for  $P_{H03}$  H-SAF rate at ground and  $P_{OBS}$  for **Sola** sub-catchments (bolds refers to the best fitted theoretical probability distribution for Akaike Information Criterion (AIC) and underlying refers to the best fitted for Anderson-Darling (A-D) test. The symbol  $\checkmark$  means, that the best fitted distribution was selected by Quantile theoretical-Quantile empirical (*Q-Q*) and probability plots analysis. H03

| Sub-catchment | Method of lower<br>limit estimation | Distribution | L&S    | K              | K-S     | A-D                   | AIC      | Selected                                                                                                                                                     |
|---------------|-------------------------------------|--------------|--------|----------------|---------|-----------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Zywiec        |                                     | GA           | 3.5530 | 0.4863         | 0.3039  | 25.8521               | 316.0350 |                                                                                                                                                              |
| OBS           |                                     | GE           | 3.5508 | 0.4605         | 0.3028  | <u>25.7393</u>        | 316.2770 | ~                                                                                                                                                            |
| Zywiec        | AIC                                 | GA           | 2.9672 | 0.4341         | 0.2715  | 19.9196               | 97.2590  | ~                                                                                                                                                            |
| MOD           | AIC                                 | GE           | 2.9972 | 0.4541         | 0.2702  | 19.8280               | 97.5187  |                                                                                                                                                              |
| H04           |                                     |              |        |                |         |                       |          |                                                                                                                                                              |
| Zywiec        | AD                                  | GA           | 3.5530 | 0.4962         | 0.3039  | 25.8521               | 316.0350 |                                                                                                                                                              |
| OBS           | A-D                                 | GE           | 3.5508 | 0.4863         | 0.3028  | <u>25.7393</u>        | 316.2770 | 3.2770     ✓       2590     ✓       5187     ✓       3.0350     ✓       3.2770     ✓       4314     ✓       8855     ✓       3.0350     ✓       5.2770     ✓ |
| Zywiec        | AIC                                 | GA           | 3.8366 | 0.5165         | 0.3234  | 29.7588               | 1.4314   | ~                                                                                                                                                            |
| MOD           | - 410.                              | GE           | 3.8279 | 0.5105         | 0.3224  | 29.6316               | 1.8855   |                                                                                                                                                              |
| H05           |                                     |              |        |                |         |                       |          |                                                                                                                                                              |
| Zywiec        | 4.D                                 | GA           | 3.5530 | 0.4962         | 0.3039  | 25.8521               | 316.0350 |                                                                                                                                                              |
| OBS           | A-D                                 | GE           | 3.5508 | 0.4863         | 0.3028  | 25.7393               | 316.2770 |                                                                                                                                                              |
| Zywiec        | AIC                                 | GA           | 4.1661 | 0.5082         | 0.3167  | 30.3203               | 54.1876  |                                                                                                                                                              |
| MOD           |                                     | 0.5082       | 0.3158 | <u>30.1451</u> | 53.8405 | <ul> <li>✓</li> </ul> |          |                                                                                                                                                              |



| Catchment of Sola<br>River | Transformation function |             |
|----------------------------|-------------------------|-------------|
|                            | H03                     | GEA-D-GAAIC |
| Zywiec                     | H04                     | GEA-D-GAAIC |
|                            | H05                     | GEA-D-GAAIC |



| H-<br>SAF | root mean<br>square error<br>(RMSE) | Δ      |  |
|-----------|-------------------------------------|--------|--|
| H03       | CORR_OBS<br>MOD_OBS                 | -2.086 |  |
| H04       | CORR_OBS<br>MOD_OBS                 | -1.752 |  |
| H05       | CORR_OBS<br>MOD_OBS                 | -1.959 |  |
| H-        | efficiency                          |        |  |
| SAF       | index                               | Δ      |  |
| H03       | CORR_OBS<br>MOD_OBS                 | +1.444 |  |
| H04       | CORR_OBS<br>MOD_OBS                 | +1.275 |  |
| H05       | CORR_OBS<br>MOD OBS                 | +1.350 |  |

| H-        | maximum   |         |  |
|-----------|-----------|---------|--|
| SAF       | absolute  | Δ       |  |
| 57.11     | deviation |         |  |
| H03       | CORR_OBS  | -15.70  |  |
| поз       | MOD_OBS   | -15.70  |  |
| H04       | CORR_OBS  | -21.64  |  |
| 1104      | MOD_OBS   | -21.04  |  |
| H05       | CORR_OBS  | -9.661  |  |
| 1105      | MOD_OBS   | -2.001  |  |
|           | mean      |         |  |
| H-<br>SAF | absolute  | Δ       |  |
| SAL       | error     |         |  |
| H03       | CORR_OBS  | -0.878  |  |
| п05       | MOD_OBS   | -0.878  |  |
| H04       | CORR_OBS  | -0.557  |  |
| 1104      | MOD_OBS   | -0.557  |  |
| H05       | CORR_OBS  | -0.851  |  |
| 1105      | MOD_OBS   | -0.051  |  |
| H-        | mean      |         |  |
| SAF       | squared   | Δ       |  |
| SAL       | error     |         |  |
| TTOO      | CORR_OBS  | 17.770  |  |
| H03       | MOD_OBS   | -17.778 |  |
| H04       | CORR_OBS  | -15.695 |  |
| 1104      | MOD_OBS   | -15.035 |  |
| H05       | CORR_OBS  | -16.620 |  |
| 1105      | MOD OBS   | -10.020 |  |



# Summary



## Status of validation: Results

- The usage of precipitation products sometimes can improve the performance of the models...
- Some peaks are well simulated (some events were partly successfully simulated)...
- Precipitation products can be useful if there is no other information on precipitation amounts...
- Some "operations" can make precipitation products more useful in hydrological modeling ("updating")
- To make precipitation products more useful for hydrological purposes it is necessary to develop merge products/blended products (H-SAF products + ground data + radar data) and correction methods