Calibration in hydrology

- Parameter estimation and multiscale verification in the Pan-EU -

Luis Samaniego, R. Kumar, O. Rakovec, M. Zink, S. Attinger, M. Cuntz, J. Mai, D. Schäfer, S. Thober

H-SAF and HEPEX Workshops on Coupled Hydrology

Reading, 6 November 2014

The "Grand Challenge" in hydro-meteorology

To develop the ability to globally **monitor** and predict the movement of water on the landscape at resolutions of 4 km or less

Wood et al. WRR 2011 Bierkens et al. 2014 HP (in press)

GRACE anomalies, Reigber et al., GFZ

The "Grand Challenge" in hydro-meteorology

EC-Tower Hohes Holz, TERENO-UFZ (Künzelmann)

To develop the ability to globally **monitor** and **predict** the movement of water on the landscape at resolutions of 4 km or less

Wood et al. WRR 2011 Bierkens et al. 2014 HP (in press)

Challenges in distributed hydrologic modeling

Holistic framework

Distributed Modeling and Parameterization with mHM & MPR

Modeling the water cycle

 $\tfrac{\partial S}{\partial t} = P - E - Q$ Ρ F Irrigated Lakes nicultur Urban Rivers Unsaturated Zone Agriculture urated Zone Grasslands U © hydrogeology.glg.msu.edu

mesoscale Hydrological Model (mHM)

www.ufz.de/mhm mhm-admin@ufz.de

Parameterization of a Hydrologic Model

State equations

$$\frac{d}{dt}\mathbf{x}_{it} = \mathbf{g}(\mathbf{x}_{it}, \mathbf{u}_{it}, \boldsymbol{\beta}_{it}) + \eta_{it}$$

$$\mathbf{y}_{it} = \mathbf{f}(\mathbf{x}_{it}, \mathbf{u}_{it}, \boldsymbol{\beta}_{it}) + \epsilon_{it}$$

Cell i, time t

- $\mathbf x$ model states, fluxes
- y observations
- $\hat{\mathbf{y}}$ model outputs
- ${f u}$ scaled input data
- $\mathbf{g}(ullet)$ dominant processes
- $\mathbf{f}(ullet)$ transformation functions
 - structural error

 η

F

- observation error
- β effective parameters

Parameterization of a Hydrologic Model

State equations

$$\frac{d}{dt}\mathbf{x}_{it} = \mathbf{g}(\mathbf{x}_{it}, \mathbf{u}_{it}, \beta_{it}) + \eta_{it}$$

$$\mathbf{y}_{it} = \mathbf{f}(\mathbf{x}_{it}, \mathbf{u}_{it}, \boldsymbol{\beta}_{it}) + \epsilon_{it}$$

$$\min_{\hat{\beta}} = \|\mathbf{y} - \hat{\mathbf{y}}\|$$

Cell i, time t

Parameterization of a Hydrologic Model

State equations

$$\frac{d}{dt}\mathbf{x}_{it} = \mathbf{g}(\mathbf{x}_{it}, \mathbf{u}_{it}, \beta_{it}) + \eta_{it}$$

$$\mathbf{y}_{it} = \mathbf{f}(\mathbf{x}_{it}, \mathbf{u}_{it}, \boldsymbol{\beta}_{it}) + \epsilon_{it}$$

Cell i, time t

How to take into account the subgrid variability of \mathbf{u}^0 and $\beta^0?$

Parameterization schemes

- Tolson and Shoemaker, 2007
- Blöschl et al., 2008
- Das et al., 2008
- Viviroli et al., 2009
- Kumar et al., 2010,12

Parameterization schemes

Parameterization schemes

Multiscale Parameter Regionalization in mHM

State equations

Regionalization

 $\beta = \langle \beta^0 \rangle$

 $\beta^0 = f(\mathbf{u}^0, \boldsymbol{\gamma})$

$$\dot{\mathbf{x}}_{it} = \mathbf{g}(\mathbf{x}_{it}, \mathbf{u}_{it}, \boldsymbol{\beta}_{it}) + \eta_{it}$$

Cell i, time t

calibration coefficients input physiographic data regionalization functions sub-grid regionalized parameters effective parameters

Samaniego et al. WRR, 2010a*, 2010b Kumar et al. JoH, 2010 * WRR Editor's Choice Award 2010

Multiscale Parameter Regionalization in mHM

Kumar et al. 2013b WRR

Multiscale Parameter Regionalization in mHM

State equations

 $\dot{\mathbf{x}}_{it} = \mathbf{g}(\mathbf{x}_{it}, \mathbf{u}_{it}, \beta_{it}) + \eta_{it}$

Does parameterization technique affect simulations of water fluxes?

Kumar et al. WRR, 2013a \rightarrow WRR Feature article \rightarrow Eos Research Spotlight

Soil moisture and streamflow:HRU vs.MPRMODIS LST [°C]HRU: θ/θ_s MPR: θ/θ_s

Samaniego et al. 2010, WRR

Soil moisture and streamflow:HRU vs.MPRMODIS LST [°C]HRU: θ/θ_s MPR: θ/θ_s

Samaniego et al. 2010, WRR

Soil moisture and streamflow: HRU vs. MPR MODIS LST [°C] HRU: θ/θ_s MPR: θ/θ_s

1 km

Samaniego et al. 2010, WRR

2000 day = 280

Soil moisture and streamflow: HRU vs. MPR MODIS LST [°C] HRU: θ/θ_s MPR: θ/θ_s θ/θ_s

2000 day = 280

Transferability within German basins

Basin	NSE-trans	NSE-cal
Main	0.92	0.95
Danube	0.87	0.90
Weser	0.91	0.94
Ems*	0.67	0.88
Saale**	0.60	0.84

Daily discharge evaluation: 1965-2005

* Precipitation undercatch ** Rappbode Dam

Samaniego et al. JHM, 2013

mHM Evaluation at Illinois SM network

Hindis Station Numbers

VIC simulation by Roads et al. 2003, JGR

Scale invariance of global "parameters" γ

Samaniego et al. 2010, WRR Kumar et al. 2013a, WRR

Reduction of the computational load

17

Parameter identifiability

mHM parameter space

- 1. Which parameters can be identified by SA?
- 2. Which parameters are important during calibration?

Derivative vs. variance-based SA¹

 \approx 16,000 model evaluations

Derivative vs. variance-based SA¹

terception

Geology

¹Göhler et al. JGR 2013, Cuntz et al. WRR 2014 (draft)

Derivative vs. variance-based SA¹

Model calibration with informative parameters

Multiscale verification of Pan EU simulations

Research goals and hypothesis

- To estimate uncalibrated water fluxes and states at multiple scales
- To investigate potential benefits of conditioning a model with multiple scale data sets.

Parameter inference based **only** on streamflow data \rightarrow Necessary but not a sufficient condition

 \rightarrow Potentially leading to biased states and fluxes

Pan-EU data

Precipitation [mm/year]

cib.knmi.nl

Period: 1950 - 2012

Pan-EU data

GRDC, EURO-FRIEND

FLUXNET and LandFlux-EVAL²

 $^2 www.iac.ethz.ch/groups/seneviratne/research/LandFlux-EVAL$

24

Soil moisture: ESA-CCl³ (0.25 deg)

July

Period: 1978 - 2010 active and passive microwave sensors

³http://www.esa-soilmoisture-cci.org

Total water storage: GRACE⁴ (1 deg)

Period: 2004 - 2010

 $^{\rm 4}{\rm Landerer}$ and Swenson, WRR 2012 / NASA

26

Performance at each basin (streamflow)

Single site

n = 347Monthly discharge

Anthropogenic influenced basins not excluded

Nested model setup for evaluation

Verification of streamflow

Cross-validation

n = 347Monthly discharge NSE < 0.5 - 25%

Anthropogenic influenced basins not excluded

Factors affecting performance

Verification of total water storage with GRACE

Verification of actual evapotranspiration (EC)

Verification of soil moisture (ESA-CCI)

Standardized anomalies

- Unknown soil depth in ESA-CCI soil moisture
- Large number of missing values

Depth 1st soil layer = 30 cm

2.5 2 1.5

0.5 0 -0.5

-1 -1.5 -2

-2.5 -3

 PROBLEM: Droughts in Iberian Peninsula and part of France not well captured by the ESA-CCI

Evaluation summary

34

Evaluation summary

Conclusions

- Effective approach for parameter estimation:
 - \rightarrow parameters screening (EEE) then SCE
- Multi-basin parameter estimation \rightarrow mHM+MPR robust for 75% of the Pan-EU basins
- Assimilation of streamflow
 - \rightarrow MPR leads to "good" estimation of mHM states at scales not used during parameter inference
 - \rightarrow Capturing high fidelity signals (anomalies) of GRACE and eddy stations was not posible
 - ightarrow Nested model parameter (γ) inference framework required
- Strong to weak signals: Q, TWS, E, SM

Appendix

mHM: mesoscale Hydrological Model

www.ufz.de/mhm mhm-admin@ufz.de

- Fortran 2003, OpenMP
- Multiscale/basin param. estimation
- Restart file
- MCMC, OPTI, SA
- Fully modular / process selection
- Python tools (pre/post proces.)
- Doxygen documentation
- SVN repository (dev. & users)
- Growing user community since release 12.2013

Data levels in mHM

- Level-2: 1-25 km
 - Meteorological forcings DWD, E-OBS, WATCH, NLDAS-2, TRIMM, WRF, MME
- Level-1: 1-8 km
 - Modeling states and fluxes
- Level-0: 100-1000 m
 - □ DEM BGK, SRTM
 - Soil texture, root zone depth вüк, whsd, statsgo
 - Hydraulic conductivity нёк
 - LAI NASA
 - □ Land cover NASA, CORINE
 - River network, gauged stations
 GRDC-EWA, EURO-FRIEND, USGS
 - Radiation, albedo, emissivity, wind LSA-SAF, NCEP-CFSR, MSG

Effect of the subgrid variability

Red river basin (~125 000 km²)

ULM runs, Livneh and Lettenmaier, HESS, 2012

Optimization & Sensitivity Analysis⁵

⁵Cuntz, Mai, et al., WRR 2014 (draft)

40

∂-based SA: Parameter Importance Index ⁶

$$M_{i,j} = \sum_{n=1}^{N} \sum_{t=1}^{T} \left[\frac{\partial Q(p_i)}{\partial p_i} \frac{p_i}{Q(p_i)} \cdot \frac{\partial Q(p_j)}{\partial p_j} \frac{p_j}{Q(p_j)} \right]$$

Parameter Importance Index:

$$PI_k = \sum_{m=1}^K \lambda_m |u_{k,m}|$$

with eigenvalues λ_k and eigenvectors $u_{\cdot,k}$ of M

⁶Göhler, Mai & Cuntz (2013) JGR Biogeoscience, 118(2)

Variance-based SA: Sobol Index

Main effect:

 $S_i = \frac{\text{Variance of Q, if one parameter is variable}}{\text{Variance of Q, if all parameters are variable}}$

Total effect:

 $S_{T_i} = \frac{\text{Variance of Q, if all incl. one parameters are variable}}{\text{Variance of Q, if all parameters are variable}}$

Efficient Elementary Effects ⁷

adapted method from MUCM toolkit (http://mucm.aston.ac.uk)

⁷Cuntz, Mai, et al. (2014) WRR (Draft)

43

Evaluation with extremes flows (at Rockenau)

Predictive uncertainty in major events

Computational efficiency and storage

Region	Cells	Δx	Δt	Run time	Storage
	$ imes$ 10 3	[km]	[h]	[min] ⁸	
DE	29	4	1	pprox 30	
US	23	12.5	3	pprox 10	
EU	8.2	24	1	pprox 15	17 GB (80 MB) ⁹
Global ¹⁰	59.6	50	1	pprox 140	
	953.6	12.5	1	pprox 300	2 TB (10 GB)

⁸Ten years run, Fortran 2003, OpenMP, EVE Linux cluster (10 cores) ⁹All variables, daily, (1 variable monthly) for 40 years simulation ¹⁰Extrapolated, including routing

46