

ERACLIM2 GA WP5 Service Developments

Manuel Fuentes Products Team - ECMWF

Acknowledgements: Baudouin Raoult + colleagues in Products Team, SW Development Section, ERA

Outline

- D5.1 MARS support for NetCDF
- D5.2 CERA Data Servers
- Link to Copernicus

What services does MARS offer?

How is it done

- Currently MARS handles 2D fields in GRIB
- GRIB data are records, not files
- MARS scans archived files, extracts metadata from GRIB headers and keeps an index that tracks where each GRIB field is (file, offset, length)
- GRIBs are reorganised into larger files, to minimise the total number of files and collocate related fields to speed up retrievals
- On retrievals, MARS find the required fields, reads them from tape, and re-assembles them according to the user's request
- MARS can perform re-gridding or sub-area extraction

Support for NetCDF in MARS

- We should provide the same services for NetCDF
 - Incremental archive
 - Data collocation
 - User can select any 2D fields from the archive and have them delivered in a single file
 - Re-gridding and sub-area extraction
- Challenges:
 - NetCDF is a file format, not a record format
 - Original files contain multi-dimensional variables (often > 2 dimensions)
 - One cannot extract a 2D field from a NetCDF file directly from tape

Solution chosen

- NetCDF files to be archived are transparently split into individual NetCDF files containing a single 2D field
- Resulting NetCDF files are annotated with MARS specific information, using NetCDF file 'Variable' attributes
- These attributes are used by MARS to index the NetCDF files, and treat them as simple binary records
- On retrieval, those records will be assembled in a single NetCDF3/4 file to be delivered to the user
- Re-gridding and sub-area will be implemented at a latter stage (new interpolation sw currently being developed)
- The delivered NetCDF files must be CF compliant (with valid CF "standard name" attributes attached to the variables), and ideally as close as possible to the CMIP5/OGC standards.

Web Data Servers

- In recent years, ECMWF has developed On-Demand Web Services under Web Re-Engineering Project (WREP):
 - ecCharts, application for forecasters, to visualise real-time data
 - WebApps/WebAPI, framework to provide access to the MARS archive

ecCharts

WebApps Data Server: Fields

Data Server: Observation Feedback

Data Access: ECMWF Web API

- Simple API to services using HTTPS
- Batch access to Data Servers:
 - Install a simple library (eg, python)
 - Install a token
 - Download data via scripts
- Access to new services in future, like plots on demand

Web API sample request

```
#!/usr/bin/env python
```

```
from ecmwfapi import ECMWFDataServer
```

```
server = ECMWFDataServer()
```

```
server.retrieve({
   'dataset' : "era20c",
   'levtype' : "sfc",
   'date' : "20100101/to/20101231",
   'time' : "00",
   'param' : "2t",
   'grid' : "1/1",
   'format' : "netcdf",
   'target' : "data.nc"
   })
```

Total usage October 2014

- Data downloaded by 1,800 users
 - 750,000,000 fields
 - 1.5 million requests
 - 78 TBytes
- Volume by application
 WebAPI: 70%, WebApps: 30%
- Volume by dataset
 Reanalysis: 85%, rest: 15%

Download of Reanalysis datasets in October 2014

Dataset	Fields	Requests	Volume
ERA-15	142,702	2,524	770 MB
ERA-40	14,273,735	71,313	167 GB
ERA-Interim	389,243,904	1,152,642	50 TB
ERA20C	255,887,608	163,762	15 TB

Copernicus Climate Change Services (C3S)

- ECMWF contribution to the Climate Data Store (CDS)
 - Provision of a basic infrastructure (HPC, Archive and Network, brokerage) for the CDS, including support and services
 - Support evolution towards distributed platform, liaison with WIS, ESGF, WMO GFCS, INSPIRE, etc.
 - Support for integration of climate products into the CDS
 - Support for the production of **global reanalysis**
 - Support for seasonal forecasts activities to the level required by the C3S

Amazon marketplace

CDS infrastructure

Climate Data Store: next steps

- Workshop early 2015
 - Gather user requirements
 - Review existing systems/software/EU projects that are relevant to the CDS
 - Perform a gap analysis, with focus on operations
- Develop/procure the missing parts in the next two years

Service developments: Conclusion

- WP5 Deliverables well on track:
 - MARS support for NetCDF in development
 - CERA Data Servers: extend current infrastructure and services
- Link to Copernicus CDS:
 - Provision of existing and new data
 - Re-use existing services and procure missing parts

Thank you for your attention

