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On the use of a Huber norm for observation quality control in the ECMWF 4D-Var

Abstract

This paper describes a number of important aspects that need to be considered when designing and
implementing an observation quality control scheme in an NWP data assimilation system. It is shown
how careful evaluation of innovation statistics provides valuable knowledge about the observation
errors and help in the selection of a suitable observation error model. The focus of the paper is
on the statistical specification of the typical fat tails of the innovation distributions. In observation
error specifications, like the one used previously at ECMWF (European Centre for Medium-Range
Weather Forecasts), it is common to assume outliers to represent gross errors that are independent
of the atmospheric state. The investigations in this paper show that this is not a good assumption
for almost all observing systems used in today’s data assimilation systems. It is found that a Huber
norm distribution is a very suitable distribution to describe most innovation statistics, after discarding
systematically erroneous observations. The Huber norm is a robust method, making it safer to include
outlier observations in the analysis step. Therefore the background quality control can safely be
relaxed. The Huber norm has been implemented in the ECMWF assimilation system for in-situ
observations. The design, implementation and results from this implementation are described in
this paper. The general impact of using the Huber norm distribution is positive, compared to the
previously used variational quality control method that gave virtually no weight to outliers. Case
studies show how the method improves the use of observations, especially for intense cyclones and
other extreme events. It is also discussed how the Huber norm distribution can be used to identify
systematic problems with observing systems.

1 Introduction

Quality control (QC) of observations [Lorenc and Hammon (1988)] is an important component of any
data assimilation system. Observations have measurement errors and sometimes gross errors due to
technical errors, human errors or transmission problems. The goal is to ensure that correct observations
are used and erroneous observations are discarded from the analysis process. It has long been recognised
that a good quality control process is required because adding erroneous observations to the assimilation
can lead to spurious features in the analysis [Lorenc (1984)].

In data assimilation the use of departures of observations (o) from the short-range (background, b) fore-
cast is an integral part of the QC. If observations, evaluated over a long period, systematically or errati-
cally deviate from the background forecast they should be blacklisted, i.e., not taken into account at all in
the analysis [Hollingsworth et al. (1986)]. The remaining observations are, for each analysis cycle, also
compared against the background and rejected if the background departures are large. Often departures,
normalised by the expected observation error, are assumed to follow a Gaussian distribution. This means
outliers are statistically very unlikely and will unjustly get the same full weight in the analysis as cor-
rect observations, increasing the risk of producing an erroneous analysis by using incorrect observations.
This is usually resolved by applying fairly tight background departure limits that rejects outliers. The
background QC limits depend on the specified observation error and background error. For accurate ob-
servations and modern high quality assimilation systems these are both small, e.g., of the order of 0.5hPa
for automated surface pressure observations. So surface pressure observations will typically be rejected
if they differ by more than about 4hPa from background fields, corresponding to six standard deviations
of normalised departures. In most cases this is reasonable, but for extreme events it may well happen
that the short-range forecast is wrong by more than 4hPa near the centre of cyclones. The QC decisions
can be improved to some degree by introducing flow-dependent, more accurate, background errors, like
the ones recently implemented at ECMWF [Isaksen et al. (2010), Bonavita et al. (2012)]. These errors
would typically be larger near the centre of cyclones.
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Section 2 of the paper investigates the innovation statistics for some of the most important in-situ obser-
vations. This leads to a discussion and description in section 3 of the gross error quality control aspects
that needs to be considered for observations. The special problems that may occur for biases and bias
correction of isolated stations is covered in section 4. After this general study of innovation statistics and
gross error characteristics, section 5 describes a range of proposed probability distributions with fat tails
that are candidates for innovation statistics and observation error specification. Based on the information
presented in sections 2-5 it is found that a Huber norm [Huber (1964), Huber (1972)] is the most suitable
distribution to use. The method allows the inclusion of outliers in the analysis with reduced weight,
because it is a robust estimation method. This is in contrast with a pure Gaussian approach where the
analysis can be ruined by a few erroneous outliers. Section 6 covers the aspects that need to be con-
sidered when implementing a Huber norm QC in a NWP system. It is described how this is done in
the Integrated Forecast System (IFS) at ECMWF, where it has been used operationally since September
2009. It is also explained how the background quality control has been relaxed, and how observation
error values have been reduced at the centre of the distribution to consistently reflect the Huber norm
distribution. Section 7 presents general impact results and a number of case studies.

2 Distribution of departure statistics for some important in-situ observa-
tions

The main weakness of using background departure statistics for investigations of observation error distri-
butions is that they are a convolution of observation and background information. Further information is
required to uniquely determine the observation-related distribution, which is what we really are trying to
estimate, as it is needed in the definition of the observation cost function. Despite this weakness innova-
tion statistics are the most common observation related diagnostics used in data assimilation. Additional
research to identify if background errors are non-Gaussian is recommended, but it is outside the scope of
this paper. Assuming the background errors follow a Gaussian distribution, all non-Gaussian aspects of
the innovation distribution can be assigned to the observation error distribution. Evaluation of the tails of
innovation distributions is also likely to provide valuable information about the tails of the observation
distributions.

The QC aspects are primarily related to small number of observations in the tails of the distribution. So
to get a sufficiently large sample of relevant departure statistics 18 months’ worth of data assimilation
system departure statistics (February 2006 to September 2007) was used for these estimates. This was
done for a large number of observation types, to determine the distributions that best represented the
normalised departures for each of these sets. The model background fields are from the operational
incremental 4D-Var assimilation system [Courtier et al. (1994)] at ECMWF, taken at appropriate time
(± 15 minutes) and at T799L91 (25km horizontal grid and 91 levels outer loop) resolution.

Figure 1 shows the departure distributions, normalised by the prescribed observation error, for a number
of these observation types. The grey crosses represent the data counts for bins of width 0.1 in the range
± 10 of normalised departures. Traditionally this would be plotted as histograms, but crosses were
easier to see on the figures. To put the focus on the tails of the distribution, the data are plotted on a
semi-logarithmic scale. This means a Gaussian distribution shows up as a quadratic function, and an
exponential distribution as a linear function. On the figure the best fit Gaussian distributions (dashed-
dotted line) are included. Figure 1a shows temperature data in the 150-250hPa range for all Vaisala RS92
radiosonde measurements in the Northern Hemisphere extra-tropics. A similar plot for the used data is
shown in Figure 1b (used data is defined as quality controlled data with more than 25% weight after
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applying the previously used ”Gaussian plus flat” distribution QC). The ”Gaussian plus flat” distribution
QC and its implementation at ECMWF is described in [Andersson and Järvinen(1999)] (abbreviated
AJ99). Vaisala RS92 radiosondes are known to be of very high quality with very low bias, very few gross
errors, and with low random errors. Panels c-f in Figure 1 show normalised departure statistics for other
conventional observation types and their data distributions for the extra-tropical regions. Panels c and d
show two different surface pressure observing systems (land surface pressure in the Southern Hemisphere
extra-tropics and ship surface pressure in the Northern Hemisphere extra-tropics) and panels e and f show
upper air and surface wind observations (aircraft winds from all levels in the Northern Hemisphere extra-
tropics and winds observed by drifting buoys in the Northern Hemisphere extra-tropics).

The solid black curves on Figure 1 show the best fit Huber norm distribution. The Huber norm, a
Gaussian distribution with exponential distribution tails, is defined in section 5 Eq. 1. Because f in Eq.
1 is first order continuous the Huber norm distribution shows up as a quadratic function that smoothly
transforms into a linear function in the tails of the distribution. It is seen that the background departure
statistics are well described by a Huber norm distribution, because the data in the tails are in good
agreement with the solid black curves. Indeed, these results indicate that the Huber norm distribution
fits the data much better than a pure Gaussian distribution (dash-dotted curves). The Gaussian plus flat
distribution that previously was used in the operational assimilation system at ECMWF is included on
Figure 1a as a thick solid grey curve. It is evident that the Gaussian plus flat represents the tails of
the normalised departure distribution very poorly for radiosonde observations. This is the case for all
the variables shown in Figure 1, and for almost all other observation types that have been investigated
(not shown). It is worth mentioning that a sum of Gaussian distributions does not produce a Huber
distribution. So this is not the explanation for the fat tails.

It is noted that there is a factor of more than 1000 between the data counts in the tails (at 8-9 normalised
departures). At the centre of the distribution (up to 2 normalised departures), departures are close to a
Gaussian distribution for most observations. There are no indications of flat tailed distributions, i.e., no
indication of standard gross errors where the observed value is unrelated to the background field. There
is rather an indication of an exponential distribution for many observations in the range 2-9 normalised
departures. For the used data (Figure 1b) the departures to large extent follow a Gaussian distribution.
This is because the departures are from the pre-2009 operational assimilation system at ECMWF that
applied the ”Gaussian plus flat” QC distribution, resulting in a sharp transition from full Gaussian weight
to zero weight, as shown schematically in Figure 5b.

3 Gross error quality control aspects for observations

Extensive investigation of the normalised background departure statistics for many different observation
types and parameters gave a useful insight into gross error aspects. Most distributions have fatter than
Gaussian distributions beyond 1-2 normalised departures. The reason why there are only few examples of
flat distributions in the tails may well be due to most observing systems now are automated. Automated
systems reduce human related gross errors like swapped latitude/longitude, E/W sign error and swapped
digits. If innovation statistics from a station or platform show flat tail gross error characteristics, it will
often be due to a systematic malfunctioning that results in all observations being wrong. It is fairly easy
to detect and eliminate (”blacklist”) these observations via a pre-analysis monitoring procedure. They
will then not be part of the observations presented to the analysis. We will now give some examples that
highlight these issues.
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Figure 1: Panels a and b: Innovation statistics, normalised by the prescribed observation error, for all and used
Vaisala RS92 radiosonde temperature observations from 150-250hPa in the Northern Hemisphere extra-tropics.
c) SYNOP surface pressure observations in the Southern Hemisphere extra-tropics, d) SHIP surface pressure
observations in the Northern Hemisphere extra-tropics, e) aircraft wind observations in the Northern Hemisphere
extra-tropics and f) DRIBU wind observations in the Northern Hemisphere extra-tropics. The best fit Gaussian
distribution (dash-dotted) and Huber norm distribution (solid) are included. Panel a) also shows the best fit
Gaussian plus flat distribution (fat solid grey).
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Figure 2: Departure statistics for: a) temperature data for all AMDAR (primarily data from European, Chinese
and Japanese aircraft) descending over the Northern Hemisphere extra-tropics, b) similar to a), but for ACARS
(primarily data from North American aircraft). c) Synop surface pressure, d) Metar surface pressure. In this panel
the black dots show the data before blacklisting.

3.1 Chinese aircraft temperature observations

Chinese AMDAR aircraft measurements were reported wrongly from March until May in 2007. Positive
(greater than 0◦C) temperatures were reported with the wrong sign as negative ◦C temperatures. This
led to a negative tail of gross errors in the innovation statistics. The two top panels of Figure 2 shows
the distribution for all AMDAR (panel a) and ACARS (panel b) temperature departures for descending
aircraft over the Northern Hemisphere extra-tropics from March to May 2007. The AMDAR data clearly
shows a large deviation from a Huber distribution for large negative departures which is due to the
wrongly reported Chinese measurements. This is one of the few examples of a normalised innovation
distribution with an almost flat tail. Over the same period the ACARS temperature observation departures
nicely follows a Huber norm distribution with only a slight misfit for very negative values.

3.2 Surface pressure observations

Figure 2c shows the distribution of surface pressure departures for Northern Hemisphere extra-tropical
synoptic land stations. A hump is clearly identifiable on the positive side of the background departure
distribution. Detailed investigations revealed that this is related to the difference in model orography
and station height for some observations. A high percentage of observations with positive background
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Figure 3: Departure statistics for: a) Radiosonde relative humidity innovation distributions in the Tropics around
850hPa. b): Normalised humidity for radiosonde observations. c) All brightness temperature departures from
METOP-A AMSU-A channel 14 (stratospheric, peaking at 1hPa) for the Southern Hemisphere extra-tropics. d)
Like panel c but for used data. e) Like panel c, al data, but for channel 7 (tropospheric, peaking at 250hPa). f)
Like panel e but for used data.

departures between 5 and 10 standard deviations are from stations located in alpine valleys. The height
of these stations tends to be lower than the height according to the forecast model orography as small
valleys are not well resolved in the model. Specific QC, like orography difference related blacklisting,
ensures that those observations get rejected so this hump disappears in the distribution of the ”used” data.

Figure 2d shows the importance of not including blacklisted data in the estimation of the most suitable
observation departure distribution. This example shows how the tropical METAR surface pressure data
fits a Huber distribution well after excluding blacklisted data. It should be noted that the blacklisting
is performed as a completely independent task that identifies stations of consistently poor quality. This
underlines the necessity of a good blacklisting procedure. It also shows the power of Huber norm distri-
bution plots as a diagnostic tool to identify such outliers.

6 Technical Memorandum No. 744



On the use of a Huber norm for observation quality control in the ECMWF 4D-Var

3.3 Humidity

Statistical distributions of humidity departures depend a lot on the selected variable. The innovation
statistics for specific or relative humidity are far from Gaussian or Huber distributed, even after nor-
malising by the specified observation error. A variable transformation, as the one used operationally at
ECMWF [Hólm et al. (2002), Andersson et al. (2005)], ensured a better fit. Figure 3a shows the dis-
tribution of radiosonde relative humidity departures, whereas Figure 3b shows statistics for humidity
data normalised by the average of analysis and background data values, mimicking the variable trans-
form method used at ECMWF. It is clear that relative humidity departures are poorly fitted by a Huber
distribution, whereas the normalised data provide a reasonable fit.

3.4 Satellite data

In general it is more difficult to find regular distributions that fit satellite data departures well. We have
therefore not implemented a more relaxed QC for satellite data. We will discuss three reasons for this
here. Firstly, most satellite data provide less detailed information than conventional data. The satellite
data usually describes the broad features well for the whole swath area. The data seldom pinpoints
small-scale weather events, for which a relaxed QC will make the biggest difference. Secondly, even
though satellite data departures for e.g., channels that peak in the stratosphere, typically follow a Huber
norm distribution, they are more in accordance with a Gaussian distribution than conventional data. An
example is given in Figure 3c (all data) and Figure 3d (used data) for AMSU-A channel 14. So there is a
smaller benefit of switching to a Huber distribution. Thirdly, some satellite channels are contaminated by
cloud and rain leading to distributions with large humps, as shown in Figure 3e, where all data for mid-
troposphere peaking AMSU-A channel 7, is shown. This channel’s atmospheric signal is contaminated
by cloud and surface returns. Strict QC is applied to eliminate the contaminated tails of the distribution.
Figure 3f shows the departure statistics for the used data for this channel, with the best Huber and
Gaussian distribution included. Note that these plots, with their log-scaling and optimal Gaussian and
Huber norm curves, also provide valuable diagnostic information. For example the two plots for the
AMSU-A channel 7 case identify that the cloud clearing is done very well, but it is not perfect for warm
departures. Likewise, from comparing Figure 3c and d it is evident that the first guess QC is too strict on
AMSU-A channel 14 data. The normalised departure QC limits are 2-3, where, without problem, they
could be increased to 6. Further investigations of relaxing background QC and using a Huber norm QC
for satellite data will be done in the near future.

4 Bias correction problems for isolated biases observations

It is always difficult for an assimilation system to identify problematic isolated observations with large
biases. This is a bigger problem when applying an observation QC that allows using outliers, because
this effectively means relaxing the background QC considerably. This problem was already identified at
ECMWF in 1998 when hourly SYNOP surface pressure data was assimilated in the first 12h 4D-Var im-
plementation. Biased isolated stations influenced the analysis negatively. The solution was to account for
time-correlated observation errors [Järvinen et al. (1999)] to reduce the likelihood of giving frequently
reporting biased observations too high weight. In 2005 ECMWF implemented a station based bias cor-
rection scheme that dynamically corrected surface pressure observation biases [Vasiljevic et al. (2006)].
This scheme only bias corrected observations in the range ±15hPa, which was safe because the then
operational background check had much tighter limits than that.
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Figure 4: Left: Surface pressure difference of the Huber norm experiment to ERA-Interim, each black contour is
1hPa, solid lines indicate negative differences. Right: Time series of o-b and o-a departures for WMO station-id
89266, top: Huber norm experiment without relaxed surface pressure bias correction limits, bottom: Huber norm
experiment with relaxed surface pressure bias correction limits.

With the introduction of the surface bias correction scheme there was no longer a need to account for
time correlated observation errors in the assimilation system, so the scheme was abandoned. Relaxing the
background check limits with the Huber norm implementation brought the problem back, because data
with very large departures was allowed into the assimilation system again, and by mistake the limits for
the surface pressure bias correction scheme were not extended accordingly. This provided a very useful
reminder that relates to a similar problem as [Järvinen et al. (1999)] found related to remote surface sta-
tions with very large departures that were due to observation biases. A similar problem was also recently
identified (H. Hersbach, pers. comm., 2014) during the testing of the ECMWF ERA-20C surface pres-
sure only reanalysis, where biased measurements from an isolated Pacific island station was spuriously
assimilated. So handling of biases is an important aspect to consider when developing an observation
QC scheme. One example encountered during the development of the Huber norm QC scheme was the
Antarctic station with WMO station identifier 89622. This station reported surface pressure hourly with
an almost constant bias of 18hPa in this data sparse area, very likely due to a misspecified station alti-
tude. Figure 4b shows the time series of the background departures in grey and the analysis departures
as black diamonds for this station. Until 26 December 1999 (observation counts 1-83, marked with the
first vertical grey line on Figure 4b) almost all the observations from this station was background QC
rejected, leading to almost identical background and analysis departures for the first week. At this point
the departures are reduced slightly, so some of the data just pass the relaxed background quality control
and become active observations in the subsequent 12h analysis (Observation counts 84-92 on Figure 4b).
Each observation initially only got a small weight. But because the biased observations the observation
errors are strongly correlated, and the sum of these small weights managed to draw the analysis some-
what towards the biased observations. The background forecast tries to correct the spurious analysis, but
each subsequent analysis is drawn more and more towards the biased observations. After four additional
analyses cycles, identified by the grey vertical lines on Figure 4b, the background has moved approxi-
mately 8hPa towards the biased observations. The surface pressure bias correction is then activated in
the next analysis cycle, after a spin-up period of five cycles, removing the bias between background and
observation values. This corresponds to the symbols after the last vertical grey line on Figure 4b. Be-
cause the analysis within those five cycles has already been moved to a biased state by these uncorrected
observations, the bias correction applied is 9hPa. This introduced the spurious (9hPa too deep) analysis
difference seen on Figure 4a. The difference is maintained for the subsequent period (not shown).
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To avoid this problem the limit for the surface pressure bias correction was extended beyond the values of
the relaxed background check. Figure 4c shows the departure time series for an assimilation experiment
with this extended limit of±25hPa for the surface pressure bias correction scheme. After a spin-up period
(at 30 observation counts on Figure 4c) the observations are bias corrected and used in the assimilation
system. A bias correction of 17hPa is performed and results in background departures very close to zero
for subsequent analysis, due to the simple almost constant bias pattern for this station. This example
shows that careful bias correction is required, especially for remote frequently reporting stations, when
very relaxed background limits are used. The problem was only identified because a control analysis was
available.

5 Potential candidates for distributions with outliers and fat tails

It has been discussed for centuries how to treat outliers in data sets. The simplest method is to assume
outliers are gross errors that are then discarded from the analysis of the data. In the 1960s [Tukey (1960)]
and others investigated statistical methods that reduce the problems associated with the large sensitiv-
ity to outliers for the estimation of mean and standard deviation of a data sample assumed to follow,
e.g., a Gaussian distribution. [Tukey (1960)] proposed to use a mixture of a one-sigma Gaussian plus a
three-sigma Gaussian that represented the effect fat tails in the distribution. [Huber (1964)] developed
the concept of robust estimation where outliers could be accepted without ruining the estimation process.
This method will be discussed further in section 6. [Huber (2002)] discuss important aspects of robust
estimation methods. There are several methods for handling outliers, as the best method depends on the
structure of the data and the users view on the value or risk of outliers. In NWP outliers occurs due to
erroneous observations (gross errors), valuable observations that can help to correct a poor background
forecast, or observations than cannot be represented by the forecast model (representativeness errors).
It is not always easy to distinguish between these groups of outliers. Robust methods are powerful be-
cause they allows the inclusion of outliers, but with some inbuilt safety that the estimation of mean and
standard deviation is less sensitive to the outliers. The most drastic robust method is to eliminate out-
liers completely. The background error QC described in section 6.6 is an example of such a method.
The simplest is then to assume the remaining data is correct and follows e.g., a Gaussian distribution.
The ”Gaussian plus flat” distribution is a refinement with a grey zone between correct data and gross
error data. A certain small percentage of the data is assumed to be gross errors, without information,
that follows a flat distribution. The remaining is assumed to follow a Gaussian distribution. The vari-
ational quality control that was used at ECMWF from September 1996 to September 2009 was based
on such a formulation. The method and implementation is described in AJ99. The implementation in
the variational data assimilation system at ECMWF is technically simple, resulting in only very minor
modifications of the non-linear, tangent linear and adjoint model code. The implementation was based
on [Dharssi et al. (1992)] and [Ingleby and Lorenc (1993)], that argued for the use of a ”Gaussian plus
flat” distribution, which assumes all outliers represent gross errors that are completely independent of the
background field and therefore provide no useful information for the analysis. The Gaussian distribution
and the flat distribution, describing the fraction of outliers, are estimated from large samples of innova-
tion statistics and depend on the quality of each observing system and variable. For small innovations
a Gaussian distribution is typically a good assumption, but for outliers this is often not a correct or safe
assumption. It should be noted that robust estimation is used in several areas outside NWP, e.g. finance,
noise reduction of images and seismic data analysis [Guitton and Symes (2003)].
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6 Aspect to consider when implementing a Huber norm quality control

6.1 Definition and Formulation of the Huber norm

Gross errors that are well represented by a flat distribution do exist for some observations, as discussed
in section 3.1, but it is evident from Figs.1-3 (and many similar figures not shown) that it most often is
a poor representation of outliers. There is evidence that the majority of outliers cannot be considered as
gross errors, but rather providers of some relevant information. This leads to fat tails in the distributions.
In this paper it is identified that these fat tails are well represented by a Huber norm.

The Huber norm distribution is defined as a Gaussian distribution in the centre of the distribution and an
exponential distribution in the tails. Equation (1) and Eq. (2) define the Huber norm distribution as it
was introduced by [Huber (1972)].

f (x) =
1

σo
√

2π
· e− ρ(x)

2 (1)

with:

ρ (x) =





x2

σ2
o

f or |x| ≤ c

2c|x|−c2

σ2
o

f or |x|> c

(2)

where c is the transition point, which is the point where the Gaussian part of the distribution ends and the
exponential part starts. The definition ensures that f is continuous and the gradient of f is continuous.
In our implementation we allow the transition points to differ on the left (cL) and the right (cR) side of
the distribution, enabling a better fit to the departure data.

The observation cost function ([Lorenc (1986)]) for one datum is defined as

JQC
o =−1

2
ln(pQC) =−1

2
ln( f (x)) = ρ (x)+ const (3)

Note that JQC
o , with the Huber norm distribution applied, is an L2 norm in the centre of the distribution

and an L1 norm in the tails. This is the reason why the Huber norm QC is a robust method that allows the
use of observations with large departures. [Huber (1972)] showed that the Huber norm distribution is the
robust estimation that gives most weight to outliers - a higher weight on outliers makes the estimation of
statistical moments theoretically unsafe.

Figure 5a shows the cost function, JQC
o , for the Huber norm distribution (solid curve), the pure Gaussian

distribution (dash-dotted curve), and the ”Gaussian plus flat” distribution (dotted curve). It is clearly seen
that the pure Gaussian distribution has large values and large gradients for large normalised departures.
The ”Gaussian plus flat” distribution has gradients close to zero for large departures. The Huber norm
distribution is a compromise between the two.

Following AJ99 we define the weight applied to an observation as the ratio between the applied JQC
o and

the pure Gaussian Jo.

W =
JQC

o

JGaussian
o

(4)
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Figure 5: Observation cost functions (a) and the corresponding weights (b) after applying the variational QC.
Solid: Huber norm distribution, dashed: ”Gaussian plus flat” distribution, and dash-dot: Gaussian distribution.

This defines how much the influence of the observation is reduced compared to the influence based
on a pure Gaussian assumption. The definition of f in Eq. (1) ensures that the same weight factor is
applicable to the gradient of the cost function, which controls the influence of the observations in the
analysis. Figure 5b shows W for the three distributions discussed, as function of departures normalised
by the observation error standard deviation, σo. Near the centre of the distribution both the Huber norm
distribution and the ”Gaussian plus flat” distribution follow a Gaussian distribution, i.e. W = 1.

It can be seen that the ”Gaussian plus flat” distribution has a narrow transition zone of weights from one
to zero, whereas the Huber norm has a broad transition zone. For medium-sized departures the Huber
norm reduces the weight of the observations and for large departures the weight is significantly higher.

A major benefit of the Huber norm approach is that it enables a significant relaxation of the background
QC. With the previous QC implementation, rather strict limits were applied for the background QC, with
rejection threshold values of the order of 5 standard deviations of the normalised departure values. For the
implementation of the Huber norm this has been relaxed considerably, as discussed in section 6.6. This
is especially beneficial for extreme events, e.g., where an intensity difference or a small displacement of
the background fields can lead to very large departures. Examples of this will be shown in section 7.

6.2 Retuning of observation error

The quality of each observation type is quantified by σo, the observation error standard deviation. While
implementing the new variational quality control scheme a retuning of σo was done with the guidance
from estimated observation errors [Desroziers et al. (2005)]. This led to changes in the observation errors
for radiosonde temperature measurements in high altitudes (above 200hPa, see Figure 6 where the used
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and the estimated observation error profile for radiosonde temperature data over the Northern Hemisphere
extra-tropics is plotted) and a retuning of the observation errors used for automatic and manual surface
pressure measurements from ships. At the same time airport surface pressure observation errors were
adjusted to be similar to the observation errors applied to automatic surface stations. The evaluation of
the 18 month of departure data clearly supported these adjustments.
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Figure 6: Profile of estimated observation errors (dotted) for Vaisala RS92 radiosonde temperature data over
the Northern Hemisphere extra-tropics compared to the used observation errors (solid). Left axis shows the data
count, right axis the pressure in hPa.

A retuning of the observation error was implemented for all data types for which the Huber norm VarQC
was applied. This is highly recommendable because the specified observation error in the Huber norm
implementation represents the good data in the central Gaussian part of the distribution, whereas it had
to represent the whole active data set in the old method. So theoretically the observation error should be
reduced, especially for data sets with a small Gaussian range, i.e., with small Huber transition points.

We examined this for all the observing systems for which a Huber norm distribution was applicable.
The symbols on Figure 7 shows the ratio of the estimated σo for the optimal Huber norm distribution
and the optimal value for a Gaussian distribution for a range of surface pressure observing systems.
Values are plotted as function of the average Huber left and right transition points (cL and cR) for three
different areas: Northern Hemisphere extra-tropics, Tropics and Southern Hemisphere extra-tropics. The
selected observing systems cover a wide range of Huber transition points. It was found that on average
the observation error is reduced to 80% of the previously used value. There is an approximately linear
relationship between the observation error retuning factor and the Huber norm transition point.

The retuning factor can be estimated well with the simple function defined in Eq. (5).

Tσo = Min
[

1.0 , 0.5+0.25
(

cL + cR

2

)]
(5)

Here Tσo is the retuning value for a certain observation. cL and cR are the right and left transition point
of the Huber distribution, respectively. We choose this simple linear function as it described the relation
very accurately (see the dashed curve on Figure 7). There was no justification for implementing a more
complex or statistically based tuning function.
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sian and the Huber standard deviation for different kinds of surface pressure observations. SYNOP observations
are split in manual and automatic (m or a) as well as land or ship (l or s). Every observation type is evaluated in
three regions: Tropics, Southern and Northern Hemisphere extra-tropics.

6.3 Determination of the optimal Huber distribution and evaluation of the Huber norm
transition points

The Huber distributions had to be computed for a large number of observing systems, their associated
variables, for various layers for profiling data, and for each channel for satellite data. It was therefore
beneficial to develop an objective method to determine the ”optimal” Huber distribution.

The algorithm is described here. First the bias of each data sample is removed, as it is considered an
independent problem to address systematic errors. Therefore, as described in section 6.1, the Huber
distribution is uniquely defined by σo, cL and cR. Note that the σo described the standard deviation of the
central sample data of normalised departures between cL and cR. So if cL and cR are very large, the σo

becomes identical to the value for the ”optimal” Gaussian distribution (shown with dashed-dotted curves
on Figs. 1-3).

The optimal left and right transition points (cL and cR) for the Huber norm distribution were determined
for each observation type and variable by searching among values in the range 0.0-5.0 in steps of 0.1.
The best Huber norm fit was established by least square like curve fitting of normalised departures. This
was done by computing a cost function, for each (cL,cR) pair, that describes the misfit between Huber
distribution and the data sample. The misfit is defined as:

n

∑
i=1

((p(xi)∗ ln(p(xi))−H(xi)∗ ln(H(xi)))2) (6)

where p(xi) is the population in range bin i and H(xi) is the population expected for the specific Huber
distribution in the range bin i.

Typically the selected cL and cR values are identical or close to each other. It should be noted that
different cL and cR introduce a bias due to the heavier tail to either left or right. This has a very small
impact on the bias, because the asymmetry due to this typically represent much less than 1 % of the data
sample.

The evaluation of Huber transition points in general also confirmed the wide range of values for different
observing systems and variables. It would be suboptimal to use a fixed value of say 1.0.
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For profiling data the vertical distribution of the Huber left and right transition points were computed for
each 100hPa vertical level. Figure 8 shows an example of this for Vaisala RS92 radiosonde temperatures.
Investigations showed that the Huber norm transition points tended to be distinct for three layers in the
atmosphere: the stratosphere (observations above 100hPa), the free troposphere (observations between
100hPa and 900hPa), and the boundary layer (observations below 900hPa). So Huber norm distributions
were computed and applied for these three layers for radiosonde, pilot, aircraft, and wind profiler data.
Notice that the transition points shown in Figure 8 differ in the stratosphere for the left and right transi-
tion point. This flexibility in the formulation gives us the opportunity to account for differences in the
behaviour of the negative/positive temperature departures. Because we use departure distributions for
the evaluation, it is not clear if the observations or the background fields are responsible for asymmetric
behaviour in the tails of the distribution. It could be questioned why the left and right transition point
for radiosondes should change with height. It could possibly be linked to representativeness errors that
in ECMWF’s, and most other assimilation systems, are treated as part of the observation error. But in
several cases we are able to link asymmetries of temperature departures to issues with the observing
system. It is of course preferable to correct for systematic observation errors and model errors closer to
the source.
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Figure 8: Profile of the optimal left and right transition points for Vaisala RS92 radiosonde temperature data for
each 100hPa layer. Solid: Left transition point, dashed: right transition point.

6.4 Huber norm VarQC implementation at ECMWF

Further aspects that need to be considered when implementing the Huber norm VarQC in an operational
NWP system are discussed here using the ECMWF operational implementation as an example. Because
Huber norm VarQC is a robust method, it allows the relaxation of the background QC. This is a very
important side benefit of the Huber norm method, because it makes observations with large departures
active, so the data get a chance to influence the analysis. The observation errors were also adjusted as
discussed in section 6.2.

The weights, W , are computed based on the high resolution departures in the non-linear outer loop of
the incremental 4D-Var [Courtier et al. (1994)]. The weights are kept constant during the minimisation
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(inner loop), because the Lanczos minimisation algorithm [Fisher et al. (2009)] used at ECMWF does
not allow the function that is minimised to be modified during the minimisation process. Some minimi-
sation methods are more lenient and would allow the weights to be adjusted slightly for each iteration of
the minimisation process. But the benefit of the much faster, but strictly quadratic, Lanzcos algorithm
outweighs the benefit of a more dynamic QC. The weights are updated at each of the three relinearisation
outer loops applied at ECMWF, this makes it possible for the analysis to change the weights during the
assimilation cycle.

In this paper we concentrate our investigation on conventional observations. As mentioned in section 3.4,
it is expected that the Huber norm QC will be most beneficial for conventional data. Of the conventional
observing systems used in ECMWF’s assimilation system it was found that the distributions for the
following observation types and variables were very well represented by a Huber norm distribution:

• Radiosonde observations: temperature and wind upper air data (with special Huber norm distribu-
tions fitted to dropsondes).

• Aircraft observations: temperature and wind upper air data.

• Pilot balloon observations: wind upper air data.

• Wind profiler observations: wind upper air data from American, European and Japanese wind
profilers.

• Land surface observations: surface pressure data from automatic and manual synop reports.

• Ship observations: surface pressure and wind data from automatic and manual ship reports.

• Airport observations: surface pressure data from metar reports.

• Drifting and moored buoy observations: surface pressure and wind data from drifting and moored
buoys.

So these observation types were all included in the operational analysis system update of the variational
QC. The remaining observation types and variables kept the ”Gaussian plus flat” distribution.

The Huber norm QC is not implemented for humidity in the present implementation at ECMWF due to
the difficulties discussed in section 3.3. It is planned to implement this in a forthcoming update.

6.5 Weights for Huber norm VarQC

Following the definition from AJ99 we define the probability of gross error, scaled to the range 0.0-1.0, to
be 1−W . The left panel of Figure 9 shows the distribution of gross error probabilities for the 18 months
sample of stratospheric radiosonde temperature data. The transparent black bars are for the previously
used ”Gaussian plus flat” distribution and the grey shaded bars are for the Huber norm distribution. Note
the vertical scale is logarithmic and bars have a width of 0.01. It is seen that more than 99% (100,000)
of the observations have gross error probabilities below 0.01. This is the case for both distributions. In
the gross error probability range from 0.01 to 0.5 the Huber norm has similar data counts in each bin.
For higher values the data counts fall off, because there are so few data values in the extremes of the
departure distribution. For the ”Gaussian plus flat” distribution bin data counts are reduced between 0.01
and 0.5, and reach a level that is an order of magnitude lower than for the Huber norm distribution at 0.5.
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For higher gross error probabilities the data counts are increased for the ”Gaussian plus flat” distribution
- a result of the sharp transition zone for gross error probabilities closer to the centre of the distribution,
resulting in more observations with large probability of gross error values. The right panel of Figure
9, similar to Figure 5b, shows the corresponding weights for the optimal Huber norm distribution and
the previously used ”Gaussian plus flat” distribution. It gives a qualitative understanding of the different
shape of data count bar charts for the gross error probabilities shown on the left panel.
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Figure 9: Illustration of the VarQC weights for a Huber norm compared to a Gaussian and flat distribution.
Left: Data count as a function of the probability of gross errors, right: corresponding weight functions for the
two distributions. Huber values were taken from the radiosonde temperature observations in the stratosphere (≤
100hPa).

6.6 Relaxation of the background quality control

Before the introduction of the Huber norm VarQC the background QC had rather strict limits. Typical
standard deviation values (α) would be around five [Järvinen and Undén (1997)] for the normalised de-
partures, (o−b)2 < α2(σ2

o + σ2
b ) , where σo and σb are the observation and background error standard

deviation, respectively. For the Huber norm VarQC this has been relaxed to around 15 standard devia-
tions of the normalised innovation departure values. The ”BG QC limits” column in Table 1 in section
7.1 shows the background QC values for the ”Gaussian plus flat” distribution (labelled Old) and for the
Huber norm QC in details for all the involved observation types and variables. The values shown in
Table 1 are absolute values in SI units. It could be argued that a background QC is not necessary any
more when a robust estimation in the variational QC is applied, but the relaxed limits are still helpful in
rejecting clearly erroneous gross errors, like zero Kelvin temperatures.

7 General impact and case studies

The overall impact of the Huber norm implementation was evaluated over a three month data assimilation
period in 2008 and for a number of intense weather events where the Huber norm implementation would
be expected to make the biggest difference. For all the experiments presented in this Section the only
difference between the control assimilations and Huber norm assimilations are the quality control and
error distribution differences described in the paper.
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7.1 A general summary of QC decisions for the Huber norm implementation

Table 1 shows shows the QC statistics for control (old) and Huber norm assimilations for all conventional
observations that use the Huber norm quality control. The data is averaged for the period of 15 November
2008 to 31 December 2008. Upper air observation statistics are split up into three vertical bins, as
described in section 6.3. The main differences are due to the relaxation of the background QC, the
use of a Huber norm fit to the departure statistics and the retuning of observation errors. The first data
column shows the total number of observations presented to the Huber norm assimilation and the control
assimilation are the same. The next two columns show the percentage of background rejected (labelled
FG rej) data. The change in background rejections is clear for all observation types, with significantly
less rejections for the Huber norm assimilation experiment. Next follow columns showing percentage
of data with very low variational QC weight (less than 25%). It is called VarQC rejected data, even
though the data is not fully rejected. The data is still active data and influence the analysis according
to its reduced weight. As discussed in section 6.5, the percentage of VarQC rejected data are generally
larger for the Huber norm because it is the percentage of a much larger sample that pass the background
QC. It is also related to the shape of the probability of gross error distributions, as shown in Figure 9.
The final four columns show the approximate limits used by the different quality control decisions. The
term ‘no data’ means that no data was background rejected for this data type during the six week period
evaluated. The VarQC limits show the range for which the weights get below 25%.

All obs
Obstype Value Level *1000 Ol d Huber Ol d Huber Ol d Huber Ol d Huber

SYNOP Ps surf 5373 0.58 0.19 0.11 0.42 260.0 780.0 200.0 140.0 Pa
SHIP Ps surf 360 0.94 0.17 0.97 2.56 280.0 1100.0 200.0 180.0 Pa
SHIP U/V surf 350 0.77 0.02 0.43 5.44 11.2 12.7 10.8 5.4 m/s
DRIBU Ps surf 1156 1.17 0.55 0.47 0.97 360.0 800.0 200.0 200.0 Pa
DRIBU U/V surf 111 4.05 0.77 1.56 6.63 10.7 26.3 7.4 4.3 m/s
METAR Ps surf 2070 0.05 0.00 0.09 0.07 1000.0 >1600 340.0 80.0 Pa
TEMP T 0-100 693 0.96 0.04 2.03 0.15 5.2 29.0 3.6 6.6 K
TEMP T 100-900 1614 0.54 0.02 0.66 0.70 3.3 15.8 2.5 2.5 K
TEMP T 1000-900 188 0.88 0.03 1.45 4.33 5.1 21.8 3.6 2.6 K
TEMP U/V 0-100 716 0.49 0.09 0.78 0.61 13.9 22.5 10.2 11.5 m/s
TEMP U/V 100-900 1237 0.35 0.08 0.39 0.79 11.2 23.5 9.1 6.5 m/s
TEMP U/V 1000-900 189 0.44 0.06 0.48 2.67 11.1 30.9 9.2 6.5 m/s
AIREP T 100-900 8477 0.08 0.00 0.05 0.19 4.4 15.9 3.8 1.4 K
AIREP T 1000-900 1529 0.40 0.03 0.09 1.77 6.2 23.9 5.0 1.5 K
AIREP U/V 100-900 8483 0.09 0.02 0.08 0.28 ~15.0 ~21.5 12.7 9.1 m/s
AIREP U/V 1000-900 1483 0.63 0.17 0.11 0.62 ~15.0 no data 12.5 8.9 m/s
PILOT U/V 0-100 238 0.53 0.04 0.81 0.71 14.3 24.6 10.3 11.6 m/s
PILOT U/V 100-900 536 0.39 0.04 0.61 1.27 11.6 23.4 9.2 6.5 m/s
PILOT U/V 1000-900 100 0.32 0.03 0.32 2.20 11.5 51.4 9.2 6.5 m/s
profiler U/V 0-100 73 0.90 0.15 0.52 0.65 15.9 22.0 10.7 12.2 m/s
profiler U/V 100-900 4061 0.15 0.03 0.10 0.25 12.7 22.2 9.2 6.5 m/s
profiler U/V 1000-900 346 0.01 0.00 0.02 0.06 13.2 no data 9.2 6.5 m/s
EU-profiler U/V 0-100 8 0.41 0.00 0.71 0.52 17.3 no data 10.7 12.4 m/s
EU-profiler U/V 100-900 2036 0.08 0.02 0.06 0.13 12.7 24.2 9.2 6.5 m/s
EU-profiler U/V 1000-900 246 0.01 0.00 0.02 0.08 13.2 no data 9.2 6.5 m/s
JP-profiler U/V 100-900 303 0.18 0.01 0.49 0.85 13.2 22.2 9.2 8.4 m/s
US-profiler U/V 0-100 46 1.36 0.24 0.70 0.93 15.9 22.0 10.7 12.2 m/s
US-profiler U/V 100-900 1181 0.34 0.07 0.13 0.40 13.4 24.1 9.7 8.9 m/s

BG QC limits VarQC rej limits% FG rej % VarQC rej

Table 1: Data usage table showing the background QC and the VarQC rejections for 15 Nov 2008 - 31 Dec 2008
of operational data (Old) and the Huber norm assimilation experiment (Huber). VarQC rejected is defined by a
weight smaller than 25%. The count for all observations is in thousands and is the same for both datasets.

This change in variational QC was implemented into the operational forecasting system at ECMWF in
September 2009 [Tavolato and Isaksen (2010)] and has proven to have a positive impact on the use of
conventional observations within the assimilation system.
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System Resolution lowest Ps (hPa)
ERA-Interim T255 - T95,T159 978.0hPa
Huber exp. T255 - T95,T159 976.9hPa
Huber exp. T319 - T95,T159 976.4hPa
Huber exp. T319 - T95,T255 975.6hPa
Huber exp. T511 - T95,T255 974.3hPa
Observation 962.4hPa

Table 2: The lowest observed and analysed surface pressures on 26 December 1999 0600 UTC. The lowest value
is a surface pressure observation. The Huber norm assimilation experiment deepens the low compared to ERA-
Interim. A further improvement can be found when increasing the resolution (inner and outer loop).

A number of impact studies and general investigations have been performed to evaluate the impact of
the Huber norm quality control. Assimilation experiments over a period of three months in 2008 showed
a small positive impact over Europe and the Northern Hemisphere extra-tropics in general, and neutral
scores for the Southern Hemisphere extra-tropics.

During the last week of December 1999 two small-scale lows affected Europe with intense gusts and
storm damage. These storms are ideal case studies due to the high-density, high-quality synoptic land
station surface pressure network over France and Germany. These surface pressure observations captured
the intensity and location of the storms very well, and neighbouring stations consistently support each
other. However, the strength of these storms was poorly represented in both the operational ECMWF
analysis and the ERA-Interim [Dee et al. (2011)]. Both assimilation systems used the old (”Gaussian
plus flat” distribution) QC method.

A number of case studies were performed to investigate the assimilation impact of applying the Huber
norm VarQC in the analysis system. The Huber norm experiments were run with the same model version
as ERA-Interim, for most experiments at the same resolution.

7.2 Lothar, 26.12.1999

The first of the December 1999 storms that hit Europe on 26 December 1999 is known as Lothar
[Ulbrich et al. (2001)]. It followed a path from the Atlantic to France, moving eastwards into Germany.
The position of this storm was well predicted in both analyses (ERA-Interim as well as the Huber norm
experiment) but the intensity is not captured well in ERA-Interim. Indeed, the SYNOP observations
reporting the lowest surface pressure were background rejected in the ERA-Interim. The Huber norm
experiment showed a reduced central pressure compared to the reanalysis because many more observa-
tions were assimilated. However, the analysis was still significantly above the lowest observed surface
pressure. One of the reasons is that the analysis is not able to capture the small scale of this event well
enough at the reanalysis resolution.

To evaluate the influence of the resolution several Huber norm experiments with different resolutions
(inner and outer loop) were carried out and the results are shown in Table 2. It shows that increased
resolution is beneficial.
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Figure 10: Rejections on 27 December 1999 1800 UTC, top: ERA-Interim, bottom: Huber norm experiment.
The contours show the analysed surface pressure field for each experiment. Black triangles indicate background
rejected observations, numbers the effective VarQC weights for quality controlled stations. Grey circles indicate
observations with weights higher than 75%.

7.3 Martin, 27.12.1999

The second storm was the very intense Martin that reached the French coast on 27 December 1999
[Ulbrich et al. (2001)]. It was poorly predicted, being too weak and misplaced in the operational ECMWF
analysis; ERA-Interim produced similar poor results. Most surface pressure observations near the cy-
clone centre were rejected by the background quality control (shown as filled triangles on Figure 10 top
panel) even though a hand analysis showed that all the observations from France were correct. This led
to an analysis with the storm centre further to the east than surface pressure observations would suggest.
The lowest surface pressure observation at 1800 UTC on 27 December 1999 reported 963.5hPa. It was
one of the background QC rejected observations in ERA-Interim.

The bottom panel of Figure 10 shows rejections and observation weights from the Huber norm assimi-
lation experiment. The numbers show the QC-weight associated with each surface pressure observation:
they are 16% or higher for all stations. More observations get higher QC-weights than in the reanalysis
due to the Huber norm. The centre of the low has correctly moved further to the west in good agreement
with the observations. Furthermore, the minimum surface pressure is reduced significantly.

The analysis and the observation rejections for the December 1999 storm cases have also been discussed
by [Dee et al. (2001)]. They use an adaptive buddy check QC approach with the same effect as the Huber
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norm method to analyse this case. However, the Huber norm method is simpler to implement in the IFS.

7.4 June 2008 extra-tropical event

At the beginning of June 2008 exceptionally low forecast scores were seen for the five day 500hPa
geopotential height forecast over Europe (anomaly correlation errors for 500hPa geopotential height
were below zero) in several NWP models (not shown).

In the operational ECMWF system this drop in performance was linked to the rejection (mainly back-
ground rejection) of radiosonde and aircraft observations around 200hPa over North America. Most
of the background rejected data had relatively small background departures, just outside the QC limits.
Applying the Huber norm VarQC had the effect that all these observations were used and the five day
forecast improved drastically. Figure 11 shows the verifying analysis over Europe on 11 June 2008 (top)
and the two five day forecasts (operational system in the middle, Huber norm experiment in the bottom
panel). The westerly flow over Europe is predicted much better in the Huber norm VarQC experiment.

7.5 Tropical cyclones

The Huber norm QC and relaxation of rejection limits are also applied for dropsonde wind and tempera-
ture observations. It results typically in more correctly analysed tropical cyclones.

Results for hurricane Ike, hurricane Bill and typhoon Hagupit from September 2008 (Ike, Hagupit) and
August 2009 (Bill) are discussed here. The two Atlantic hurricanes were well observed by dropsondes.
Usage statistics for this period confirms that more dropsonde wind and temperature data was used in the
Huber norm experiment than in the operational system.

Figure 12 shows the observed cyclone track, marked with crosses for every six hours, and the anal-
ysis of surface pressure for the three tropical cyclones at one selected analysis time during the most
intense cyclone phase. The gray contours show the mean-sea-level (MSL) pressure analysis. The black
solid/dashed contours show the reduction/increase in MSL pressure when Huber norm QC and relaxed
background error QC is applied. It is evident that all three tropical cyclones have been intensified very
significantly by using the revised observation QC. Figure 13 shows the time series of core surface pres-
sure every six hours. These results indicate that the use of the Huber norm (solid lines) intensified the
core pressure compared with the analysis that used the ”Gaussian plus flat” distribution (dashed line) in
the quality control for many analysis cycles during the intense phase of the tropical cyclones.

For the Atlantic hurricanes Ike and Bill measurements of the core MSL pressure is available (shown with
the dash-dotted lines on Figure 13). For storm Hagupit no core MSL pressure observations are available,
but the intensity estimates for Hagupit indicates it developed into a typhoon from a tropical storm on 20
Sep 2008. This means it was too weak in both analyses. So all three time series show that the Huber
norm experiment is improving the surface pressure analysis of the tropical cyclones.

It is clear that when extensive dropsonde data is available, like for hurricane Bill, deeper and more
accurate analyses were obtained when the Huber norm quality control was applied.
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Figure 11: Analysis for 500hPa geopotential height for 11 June 2008 (top panel) and the five-day forecast valid
at the same time from the operational ECMWF system (middle panel) and the Huber norm experiment (bottom
panel).
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Figure 12: Improvement on tropical cyclone analyses due to Huber norm QC. One solid black contour indicates a
difference of 1hPa (2hPa) in the surface pressure analysis in panel a and b (in panel c) compared to the control.
Black crosses indicate the cyclone path. Panel a: Hurricane Ike on the 10 September 2008 1800 UTC in the Gulf
of Mexico approaching Texas. Panel b: Typhoon 0814 Hagupit on the 21 September 2008 1800 UTC in the Pacific
approaching the Chinese coast. Panel c: Hurricane Bill on the 20 September 2009 0000 UTC in the Caribbean
Ocean.
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Figure 13: Time series of tropical cyclone center surface pressure (in hPa) for the storms Ike (top), Hagupit
(middle) and Bill (bottom). The solid line shows the surface pressure analysis from the Huber norm assimilation
experiment, the dashed curve is the control experiment. The dash-dotted line shows the observed surface pressure
if available. The grey shaded area indicates the time after the land fall of the cyclone and the vertical line marks
the date and time used in Figure 12.

8 Conclusions

The paper describes a number of aspects that are important to consider for quality control (QC) of ob-
servation used in data assimilation systems. Observations have measurement errors, representativeness
errors and sometimes gross errors. In data assimilation innovations are used extensively for observation
QC and provide generally very valuable information [Hollingsworth et al. (1986)]. But the background
forecasts also have errors, sometimes very large ones, so it may be difficult to determine if an observa-
tion or the equivalent model value is the outlier. Monitoring time series for individual in-situ stations and
satellite channels provide a powerful method for detecting poorly performing or erratic platforms. It is
shown how semi-logarithmic plots of normalised departures also are able to identify groups of outliers.
Studying these outlier samples makes it often possible to identify problems with observations used in
the data assimilation system, e.g., due to representativeness errors in mountainous areas. For humidity
data normalisation is required to obtain Gaussian-like innovations. For satellite data clouds, rain and
surface emissivity may contaminate the atmospheric signal. The semi-logarithmic plots of normalised
departures also provide useful guidance in detecting this. A comprehensive evaluation was performed of
the departure statistics for every observing system and every variable used in the ECMWF assimilation
system over an 18 month period. After filtering out systematic outliers (”blacklisting” of stations and
satellite channels) there is very little evidence of gross errors for the observations used in the departure
distributions. This is likely because most observations now are automated and therefore either of nominal
quality or all represent gross errors that therefore are easy to detect.
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The difficulties related to assimilation of isolated frequently reporting stations with biases is discussed.
It is shown how important it is to do bias correction of isolated stations, especially when observation QC
limits are relaxed. It is important to consider this when an observation QC scheme is developed.

Various QC methods for handling outliers are presented. The main issue is how much weight to assign to
outliers. The ”Gaussian plus flat” distribution method [Andersson and Järvinen(1999)] used at ECMWF
from 1999 to 2009, had fairly strict background QC limits and a sharp transition from observations being
active to being given virtually no weight in the analysis. The paper describes the introduction of a Huber
norm QC that makes it safe to use observations with large departures in the analysis. This is because
it is a robust method where the moments of the distribution are affected very little by a few erroneous
outliers.

Evaluating the 18 months innovation data sample from ECMWF showed that almost all departure dis-
tributions were well described by the Huber norm distribution, after removing systematically erroneous
data. The fit was much better than for the pure Gaussian distribution or a ”Gaussian plus flat” distribution.
It was also shown to be beneficial to introduce the flexibility of allowing different left and right transition
points from the Gaussian to exponential part of the Huber distribution. It is acknowledged that a Huber
distribution fit for the normalised innovations does not prove that the observation error distribution fol-
lows a Huber distribution. Innovation distributions are a convolution of observation and background error
distributions. For the background QC it is theoretically correct to use the innovation statistics, but for the
observation cost function term it is not. But it is shown that it is more beneficial to relax the observation
QC and allow outliers to influence the analysis under the assumption that observation errors follow the
robust Huber distribution. Several case studies show how the Huber norm quality control deserves the
credit for improved analyses and forecasts of extreme events such as extra-tropical storms and tropical
cyclones. The examples show the strength of the robust Huber norm approach that enables the analysis
to benefit from observation outliers in the situations when several observations deviate significantly and
consistently from the model background. The previously used quality control method would reject such
observations.

The Huber norm quality control has been implemented successfully at ECMWF in September 2009 for
wind, temperature and surface pressure measurements from all conventional observations available. In
the future this will be extended to humidity and some satellite data.

This work has also shown that refined quality control and observation error tuning can be an important
method to help extract more information from observations. It is an area of data assimilation where there
is potential for further improvements.
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