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Optimal flow-dependent selection of channels from advancedsounders in the presence of cloud

Abstract

This study aims to illustrate a general procedure based on well-known information theory concepts
to select the channels from advanced satellite sounders which it is most advantageous to assimilate
in all-sky conditions – i.e., both in clear sky and in the presence of cloud – using a flow-dependent
estimate of forecast uncertainty. To this end, the standarditerative channel selection method, which
is used to select the most informative channels from advanced infrared sounders for operational
assimilation, was revisited so as to allow its use with measurements that have correlated errors.
The method is here applied to determine a small set (namely, 24) – relatively to a total of 8461
channels that are available on the Infrared Atmospheric Sounding Interferometer (IASI) on board
the EUMETSAT Polar System Metop satellites – of humidity-sensitive channels, which can be used
to perform all-sky data assimilation experiments, in addition to those currently used for operational
data assimilation of IASI data at ECMWF. Care was taken to usein the channel selection procedure
a realistic specification of forecast error uncertainty, which was determined from an ensemble of
data assimilation (EDA) forecast fields for a case study in July 2012. Also, (cumulative) weighting
functions that provide a vertically-resolved picture of the (total) number of degrees of freedom for
signal expressed by a given set of measurements were introduced, which allow us to define a novel
channel selection merit function that can be used to select measurements that are most sensitive to
variations of a given parameter over a given atmospheric region (e.g., in the troposphere).

1 Introduction

Over the last decade or recent decades there has been a formidable increase in the amount of data that is
being acquired by satellite sounding instruments and disseminated to operational meteorological centres
for assimilation, particularly in the infrared spectral region. At ECMWF, the infrared sounding instru-
ments that are currently monitored and assimilated are: theHigh Resolution Infrared Radiation Sounder
(HIRS), on the EUMETSAT Polar System Metop-A polar orbitingsatellite, with twenty channels; the
Advanced InfraRed Sounder (AIRS) on board AQUA and measuring over 2378 channels; the Infrared
Atmospheric Sounding Interferometer (IASI) also onboard on Metop with 8461 channels and the Cross-
track Infrared Sounder (CrIS) on board the Suomi NPP satellite, with 1305 channels. In each case only
a subset of channels are assimilated.

In order to be able to exploit such wealth of data, operational centres had to overcome numerous techno-
logical and scientific challenges, including making appropriate choices about which subset of channels
from each instrument to consider for assimilation. The problem was put on firm theoretical grounds by
Rodgers [23], who described an iterative method to determine an optimalset of channels by maximizing
a figure of merit based on their Shannon information content.In particular, according to this method, a
new channel is selected if it provides the largest information increment with respect to the information
content already provided by all previously selected channels. A subsequent study [21] showed that the
iterative method provided a more effective channel selection – i.e., a larger state estimate error reduction
– than other existing methods based on a non-iterative approach (see, e.g., [20]). As recognized in [21],
a likely reason for the shortcomings of the non-iterative methods is their difficulties in providing a se-
lection of channels that are informative over atmospheric partial columns at different height ranges, i.e.,
that are representative of different spectral regions.

The iterative channel selection method – after appropriatepre-screening of channels with too large
forward-model uncertainty or with characteristics that make them more sensitive to mis-specifications
of forecast error uncertainty in observation space (e.g., with multiple gas sensitivities or with jacobians
that have multiple peaks or long tails) – was used at ECMWF [5] to determine an optimal set of (currently
191) IASI channels sensitive to atmospheric temperature, water vapour, ozone and surface conditions for
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operational assimilation. The impact on analyses and forecasts of the selected IASI channels with respect
to the ECMWF operational system at the time of the experiments is discussed in [6]. The same channel
selection methodology was also used to select the most informative channels from AIRS [8].

In order to reduce the amount of computational resources needed by the iterative method, the channels to
be selected are usually assumed to have independent errors so that the retrieval error covariance can be
calculated sequentially. This is, however, not often the case as radiance data calculated with fast forward
models used for operational assimilation can have spectrally correlated errors (see [18], his section 6
and Figure 13) with length scales that can be significantly larger than those due to apodization, which
only involves adjacent channels. Other relevant sources ofinter-channel error correlation include: the
variations of atmospheric species such as water vapour or ozone when selecting temperature sensitive
channels; errors arising from shortcomings in accounting for cloud as well as surface emissivity errors;
representativeness errors [4].

A recent channel selection study [25] investigated a way to account for observation error correlations
arising from imperfect knowledge of the concentration of unconstrained (i.e., not retrieved) atmospheric
constituents with absorption lines in the spectral regionsthat are sampled by the set of channels consid-
ered for selection. Observation errors are expressed in [25] as a combination of random and systematic
components, with the random component being assumed as spectrally uncorrelated and as the only ob-
servation error component that is relevant to update the retrieval error covariance calculated using the
previously selected channels. In this way it is still possible to make use of the sequential method to up-
date the retrieval error covariance, with some computational savings. At the same time, both observation
error components – the diagonal random error and the spectrally-correlated systematic error components
– are considered to compute the information-content based figure of merit used for channel selection.
Another recent study [16] investigated the use of the iterative channel selection technique to comple-
ment the IASI channels, which are already in use for operational assimilation of IASI data in clear sky
conditions (see [6]), with additional channels that are most effective for thejoint retrieval of ice and
liquid water content using IASI data without solar contamination. The impact of the additional channels
on water vapour estimates was also assessed. The authors found that the additional channels provided at
best only marginal improvements with respect to the case when only the standard channels are used in
the retrieval.

In this study, the iterative channel selection methodologywas revisited and modified to be used in a
consistent way with observations having correlated errors. This novel formulation of the iterative non-
sequential selection method was then used to select the mosteffective IASI channels for the estima-
tion of atmospheric water vapour profiles both in clear sky and overcast conditions. To this end, a
flow-dependent estimate of forecast errors, derived from anECMWF’s “ensemble of data assimilations”
(EDA) run on a 91-level and 50-member configuration, was usedfor a case study during summer 2012. It
is important to note that the main aim of this work is not to replace existing sets of IASI channels selected
for assimilation in clear sky but rather to determine a relatively small number of additional channels that
can provide the largest impact on meteorological analyses in all-sky conditions. This means that the
IASI channels selected in this study are considered to be best suited to assimilate water-vapour sensitive
observations of radiation emerging from either a clear-skyor a cloud-affected scene with a single obser-
vation operator that includes a parametrization of multiple scattering by clouds and no need for cloud
detection (see, e.g., [2]).

The paper is structured as follows. Section2 provides a detailed description of the channel selection
methodology and a step-by-step algorithm. Also in this section, the standard information-based figure
of merit used for selection is extended to allow a selection that is optimal for estimation over a subspace
of the state space (e.g., over a given height range or a given parameter). In section3 a description of the
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case study, with particular attention to the quantificationof the sensitivity of the radiation emerging from
the atmosphere to the presence of cloud at a given location isprovided. Section4 discusses the effects
of the chosen forecast and observation error specificationson the signal-to-noise characteristics of the
satellite instrument, while section5 provides details on the selection of optimal channels for atmospheric
humidity estimation in all-sky conditions as resulting from the use of the selection method described
in this paper, including a list of the selected channels. Finally, a summary of the work and its main
conclusions are given section6.

2 Iterative channel selection with correlated observationerrors

The channel selection method as described in [23] is based on finding the channel that, at each iteration,
provides the largest increment to the number of degrees of freedom for signal (DFS) already provided by
the previously selected channels. This procedure is repeated until the required number of channels have
been selected. To reduce the computational costs of the iterative selection process the original algorithm
also assumes that the measurement error covariance for the considered channels is diagonal. In this way
it is possible to calculate the maximum-a-posteriori retrieval error covariance found when making use of
a set ofk measurements (see, e.g., [24], his section 5.4) as an update of the retrieval error covariance
valid for a set ofk-1 measurements. This simplifying assumption is also used in [25], while observation
error correlations are instead taken into account within the DFS-based figure of merit used for channel
selection.

The iterative channel selection method used here avoids theuse of the sequential retrieval error covari-
ance update formula and can then consistently be used in the presence of correlated observation errors.
The increased computational costs incurred when avoiding the sequential update proved to be affordable,
also considering that the method is not supposed to be used for near-real-time applications. But before
discussing the algorithm further let us define some relevantquantities.

In order to retrieve an estimate ofxt ∈ R
n, the true state of the system, we can make use of a set of

measurements that are assumed to be components of the measurement vectoryo ∈ R
m. The relationship

between the measurement vector and the state vector can be written as

yo = H(xt)+ εo (1)

whereH(xt) ∈ R
m×n is the observation operator andεo ∈ R

m is an additive observation error vector,
assumed to be unbiased and Gaussian-distributed with nonsingular covarianceRm. If the observation
operator is approximately linear in a given region of the state space aroundx0 it is meaningful to approx-
imate Eq. (1) as

yo ≃ H(x0)+H(xt −x0)+ εo. (2)

whereH ≡ (∂H/∂x) calculated atx0 is the Jacobian matrix. In this case, we can definey as (see [24],
his section 8.3)

y ≡ yo−H(x0)+Hx0 ≃ Hxt + εo. (3)

The algorithm used in this work is based on maximizing a figureof merit given by the number of DFS.
The total number of DFS using a given set of measurements,ds is given by (e.g., [23], his section 2.5)

ds = tr(In−PaB−1) ≡ tr(A) (4)

wherePa ∈ R
n×n is the retrieval error covariance matrix when a measurementvector withm component

is used in the retrieval,B ∈ R
n×n is the forecast (also denoted as prior or background) error covariance
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matrix, In is the identity matrix of ordern and whereA is the so-called averaging kernel matrix. Let us
now introduce an extension of the DFS-based figure of merit that may be used to maximize the number
of DFS over a given number of state vector components, that is, over a given range of model levels (e.g.,
in the troposphere) or a given state vector parameter (e.g.,specific humidity or the profile of a given
atmospheric chemical compound of interest).

2.1 DFS weighting functions and the effective DFS

If now B is expressed asB = XX , whereX ∈ R
n×n is the symmetric square root ofB, we can define the

signal-to-noise matrixS of the considered measurements asS= R−1/2HX . The signal-to-noise matrix
can be expressed in terms of its singular value decomposition asS = UΛVT , whereU ∈ R

m×m and
V ∈R

n×n are orthogonal matrices whose columns are the left and rightsingular vectors ofS, respectively,
and whereΛ ∈ R

m×n is the matrix whose nonzero elements have the same row and column indexes and
are given by the singular valuesλ j of S, with j = 1, . . . , r wherer is the rank ofS, with r ≤ min(m,n).

It is possible to show (see [19], his section 5) that the retrieval error covariancePa can be expressed in
term of the singular values and the right singular vectors ofSas

Pa = XV
(

(Λ2
r + I r)

−1 0r×(n−r)

0(n−r)×r In−r

)

VTX =
r

∑
j=1

X
v jvT

j

1+ λ 2
j

X +
n

∑
i=r+1

X f v jvT
j X (5)

Noting that∑n
j=1v jvT

j = In, Eq. (5) can be written as

Pa = B−
r

∑
j=1

λ 2
j

1+ λ 2
j

X f v jvT
j X f . (6)

From Eqs. (6) and (4) we can write

ds = tr(
r

∑
j=1

λ 2
j

1+ λ 2
j

X f v jvT
j X f B−1) ≡ tr(

r

∑
j=1

dsjX
f v jvT

j X f B−1) =
r

∑
j=1

dsj tr(X
f v jvT

j X f −1
), (7)

asds can also be expressed as (see [19], his section 4)ds = ∑r
j=1

λ2
j

1+λ2
j
≡ ∑r

j=1dsj . As the trace of a

matrix is invariant under similarity transformations (e.g., [10], their section 7.1.1) Eq. (7) can be written
as

ds =
r

∑
j=1

dsj tr(v jvT
j ) =

r

∑
j=1

ds jv
T
j v j (8)

Noting thatvT
j v j = 1 asv j is an orthonormal basis vector, the expression in Eq. (7) linking the degrees

of freedom for signal (DFS) in observation space with the DFSin state space represents a trivial identity
that follows from the fact that the two quantities are equivalent (e.g., [24], his section 2.5). However, it
is possible to make use of the diagonal elements of the matrixds jv jvT

j given by

sj ≡ diag(ds jv jvT
j ) = dsj(v

2
1 j ,v

2
2 j , · · · ,v

2
ni) = dsjv j ◦v j (9)

where◦ denotes the element-wise (or Schur) product, in order to determine how the number of DFSdsj

are vertically distributed for each of the variables included in the state vector. Note thats= ∑r
j=1sj =
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diag(A). From Eq. (8) it also follows that the vertical distribution of the totalnumber of DFS for a given
model variable is given by

s= (
r

∑
j=1

ds jv
2
1 j ,

r

∑
j=1

dsjv
2
2 j , · · · ,

r

∑
j=1

dsjv
2
n j) =

r

∑
j=1

dsjv j ◦v j . (10)

In other words, the quantityds jv
2
l j represents the fraction ofdsj achieved on a given model variable (e.g.

temperature) at model levell while ∑r
j=1dsjv

2
l j is the total number of DFS achieved on the same model

variable at model levell . The components ofsj define thej-th DFS weighting functionfor all relevant
model variables, while the components ofsdefine thecumulative DFS weighting functionfor all relevant
model variables. Note that the elements (always non-negative) of the cumulative DFS weighting function
coincide with the diagonal elements of the averaging kernelmatrix A.

The sumdeff
s of a subset of the components ofsdefined over a given region of the state space defined as

deff
s ≡

k2

∑
k=k1

sk =
r

∑
j=1

ds j

k2

∑
k=k1

v2
k j (11)

represents theeffective degrees of freedom for signalachieved by a set of measurements over that region
of the state space, withk1 andk2 being the lower and upper model levels defining an atmospheric (partial)
column of interest, for a given parameter of interest (e.g.,atmospheric humidity). As discussed in the
next section, the (effective) degrees of freedom for signalcan be used, for example, as a figure of merit
for channel selection in order to select the set ofnsel channels that provide most information about the
whole (selected region of the) state space. Note thatdeff

s ≡ ds whenk1 = 1 andk2 = n. It is also important
to note that the iterative channel selection results obtained using the number of DFS as merit function do
not change if another monotonically increasing merit function of a set ofλi is used instead. In particular,
the same set of channels are selected when using the Shannon information contentI defined as (see,
e.g., [24], his section 2.5.2)I = 0.5∑i ln(1+ λ 2

i ).

Finally, it is useful to compare the newly-introduced DFS weighting function with the familar jacobian
defined as a given row ofH in Eqs. 1 and2. To determine the region of the state space a given instru-
ment can sense it is necessary to explore the jacobians for all instrument channels of interest to check
where they are significantly different from zero and possibly where they peak. This region of the state
space, however, in general does not coincide with that on which a given sounder can provide most of its
information, which is also a function of the observation andforecast error covariance matrices used for
assimilation. Also, the jacobians can be negative and this may cause confusion when the jacobians are
used as a measure of vertical resolution for a given variable. The cumulative DFS weighting functions
includes contributions from the jacobians of all considered channels and then it provides a concise depic-
tion of the sensitivity of a given instrument on different vertical atmospheric layers for different model
variables. Also, from the fact that the sum of the componentsof s is equal tods it follows that the sum of
the elements ofs over a given atmospheric partial column and model variable quantifies the number of
DFS that the instrument can provide on the chosen model variable over that region. As explained above,
however, the characteristics of the DFS weighting functions vary according to the forecast error uncer-
tainty used for retrieval or assimilation so that they are not only linked to the instrument specifications.

2.2 Description of the selection algorithm

An iterative, non-sequential, channel selection algorithm can be devised as follows. At the first iteration
stepl = 1 the instrument channeli is considered and the signal-to-noise matrixSl=1,i ∈R

1×n is calculated
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as

Sl=1,i =
hT

i

σo
i

X, (12)

wherehT
i and σo

i are the row ofH and the observation error standard deviation corresponding to the
measurement channeli, respectively. Then the Gramiangl=1,i ∈ R of ST

l=1,i , given by

gl=1,i ≡ Sl=1,iST
l=1,i ≡ λ 2

l=1,i, j=1, (13)

is computed, where the indexj orders the singular values ofSl ,i . Then the numberdsl=1,i of DFS for
channeli is calculated as

dsl=1,i =
λ 2

l=1,i, j=1

1+ λ 2
l=1,i, j=1

. (14)

Note that from Eqs. (12), (13) and (14) it follows thatdsl=1,i can also be expressed as

dsl=1,i =
hT

i Bhi

σo2

i +hT
i Bhi

(15)

and this shows the equivalence between Eq. (14) and Eq. (17) in [21].

At iteration stepl = 1 the Gramiangl=1,i and the numberdsl=1,i of DFS are calculatedm times, with
i = 1, . . . ,m. It is important to note that these computations can be performed in parallel. The channel
selected atl = 1 is the channeli1 with dsl=1,i1

= max(dsl=1,i ), with i = 1, . . . ,m.

The iteration stepl = 2 consists in calculatingSl=2,i ∈ R
2×n as

Sl=2,i = R−1/2
l=2,i

(

hT
i1

hT
i

)

X (16)

whereRl=2,i ∈ R
2×2 is a submatrix of the observation error covarianceR defined as

Rl=2,i =

(

σo2

i1 r(i1, i)σo
i1σo

i

r(i1, i)σo
i1σo

i σo2

i

)

= L l=2,iΓ2
l=2,iL

T
l=2,i (17)

andR−1/2
l=2,i = L l=2,iΓ−1

l=2,iL
T
l=2,i . The Gramian matrixGl=2,i ∈ R

2×2, with i 6= i1, is then given by

Gl=2,i ≡ Sl=2,iST
l=2,i = Ul=2,iΛ2

l=2,iU
T
l=2,i (18)

Then the number of DFS for channeli 6= i1 is calculated as

dsl=2,i =
r

∑
j=1

λ 2
l=2,i, j

1+ λ 2
l=2,i, j

(19)

with r ≤ min(2,n). At iteration stepl = 2 the Gramian matrixGl=2,i and the number of DFSdsl=2,i

are calculatedm−1 times, withi = 1, . . . ,m 6= i1. The channel selected atl = 2 is the channeli2 with
dsl=2,i2

= max(dsl=2,i), with i = 1, . . . ,m 6= i1.

The algorithm is iterated untill = nsel channels are selected. Note that if the state vectorx is composed
of two state vectorsx1 andx2 – say temperature and humidity – and the background error covariance
matrixB is block diagonal over the subspaces defined byx1 andx2, then the signal-to-noise matrixScan
be calculated asSx = (Sx1,Sx2).
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Finally, note that when there is the need to select channels that are particularly suited to reduce retrieval
errors over a given region of the state space, it is possible to replacedsl ,i with deff

sl ,i
as a channel selection

figure of merit. This can be achieved by replacingGl ,i ∈ R
l×l in Eqs. 13 and18 with GT

l ,i ∈ R
n×n, the

Gramian ofSl ,i , given by
GT

l ,i ≡ ST
l ,iSl ,i = V l ,iΛ2

l ,iV
T
l ,i (20)

and then by using thej-th columnvl ,i, j of V l ,i and the j-th diagonal elementλ 2
l ,i, j , with j = 1, . . . , r to

calculatedeff
s from Eq. 11 over a selected region of the state space. It is then possibleto replaceds with

deff
s in Eqs. 14 and19 and use it as a figure of merit for channel selection over a target subspace of

the state space. Note that with this modifications the computational expense of the selection algorithm
becomes significantly larger, in the typical case whenn > nsel ≥ l , as at each iteration it is necessary
to compute the eigenvector decomposition of an× n rather than of al × l matrix. This can still be
computationally affordable, e.g., when only temperature is considered in the state vector and there is the
need to find the best channels for temperature estimation, e.g., in the troposphere.

3 Description of the case study

In this work, the channel selection method discussed above is used to check whether the informative
potential on key atmospheric variables of a set of instrument channels changes when cloud is present in
the instrument field of view. The answer to this question may lead to the selection of a set of channels
that provide significant information on temperature or water vapour in all-sky conditions.

To study channel selection strategies that are effective and robust both in clear sky and in the presence
of cloud a case study was selected on 30th June 2012 at 2100 UTC. A 50-member ensemble of short-
range forecasts – including also cloud liquid and ice water content and cloud fraction – generated from
an ensemble of data assimilations (EDA) at ECMWF was used in this study to define a flow-dependent
forecast error covariance over 91 model levels. Care was taken to inflate the variance of the forecast
ensemble in order to be approximately equal to the EDA mean square error (routinely estimated from
operational ECMWF analyses) so as to lead to more reliable forecasts [3]. For each ensemble member
at each location it is possible to calculate the cumulative cloud coverNtot, defined as

Ntot = 1− (1−N1)
n

∏
l=2

1−max(Nl−1,Nl )

1−Nl−1
(21)

when all cloud layers between the top (l = 1) and the bottom layer (l = n) are considered. Here we
have assumed cloud layers in the column to have maximum-random overlap [22] [17]. Figure1 shows
the ensemble-mean values ofNtot for the whole atmospheric depth as well as the 135 locations of atmo-
spheric columns over ocean that are cloud-free (Ntot = 0, marked with a red cross) or the 169 overcast
(Ntot = 1, marked with a blue cross). Given that cloud fraction is a non-negative quantity, the locations
that are cloud-free or overcast in the forecast ensemble mean are also such for all ensemble members.
We can then denote the cross-marked columns as either “almost surely” (a.s.) – i.e., with probability 1,
as defined by the considered forecast ensemble – cloud free ora.s. overcast. Hereafter, when referring to
clear-sky or overcast conditions, it is assumed to considerthem in an almost-surely sense. Also, in Figure
2 is shown the vertical distribution of ensemble mean cloud quantities at the a.s. overcast locations.

In this study the radiation emerging from the atmosphere wassimulated using version 11 of the RTTOV
package (Radiative Transfer model for Television InfraredObservation Satellite Operational Vertical
sounder) [12] in the ”scattering parametrization” configuration [17] to account for cloud radiative ef-
fects. In order to investigate the sensitivity of IASI observations to temperature and water vapour at
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Figure 1: Ensemble mean cumulative cloud fraction Ntot over all 91 model levels. Cloud-free columns (with
Ntot = 0) and overcast columns (with Ntot = 1) are marked with a red or a blue cross, respectively.
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Figure 2: Ensemble mean cloud fraction (left panel), specific cloud liquid water content (mid panel) and specific
cloud ice water content over all 91 model levels at the 169 a.s. overcast locations shown in Figure1.
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Figure 3: Water vapour and cloud ensemble mean profiles at a selected overcast location over the ocean.

a given channel depending on cloud conditions it is possibleto calculate the Jacobian matrix, i.e. the
linearized observation operatorH (see Eq.2) about the ensemble mean forecast. Figure3 shows water
vapour and cloud ensemble-mean profiles at an overcast location over the Atlantic ocean. In Figure4
are shown the elements corresponding to atmospheric temperature and humidity of a row of the Jacobian
matrix linearized about the ensemble mean forecast corresponding to IASI channel 921 (centred at 875
cm−1 in the infrared atmospheric absorption window). In particular, it is interesting to check how the
atmospheric temperature and humidity jacobians change when cloud is removed from the instrument
field of view. Figure4 shows that the height of the peak of the temperature jacobianin the presence of
cloud is very close to that where cloud ice water density reaches it maximum value, while in clear sky the
measurements of Tb in the considered atmospheric window channel are mainly sensitive to temperature
variations in the lower troposphere, as expected. Also, themeasurement’s vertical resolution is consider-
ably higher when cloud is present in the instrument field of view and the peak temperature sensitivity is
more than 20 times larger than that experienced in clear sky.The changes in the water vapour jacobian
due to the presence of cloud are largely similar, although the altitude of the peak of the jacobian in the
presence of cloud is higher and its width is larger than in thecase of the temperature jacobian when cloud
is present.

4 Evaluation of flow-dependent signal-to-noise characteristics of IASI chan-
nels

As recognized by previous channel selection studies cited in this paper, from the discussion presented
in section2 it follows that information-content-based channel selection results depend critically on the
signal-to-noise characteristics of a given instrument as expressed in a particular data assimilation or re-
trieval system. In particular, a meaningful expression forthe number of DFS of a set of measurements
requires full-rank expressions for the vertical forecast error covarianceB and observation error covari-
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Figure 4: Temperature and humidity jacobians at a selected overcast location over the ocean (the same location
chosen in Figure3) in cloudy conditions and when cloud is removed from the fieldof view.

anceR.

A forecast ensemble of large sizeK (i.e., with K > n), for example, can be used to provide a full-
rank approximation ofB. The dimensionn of the state space, however, is usually significantly larger
than the ensemble size (even when the state describes the vertical profile of a single model variable!)
so that the directions spanned by the forecast error vectorsderived from the ensemble explore only a
subset of the state space at observation location. This means that the vertical forecast error covariance
estimated from the ensemble is rank deficient and it is well known that this may lead to spurious long-
range correlations (e.g., [11]). To avoid this problem, two complementary strategies arehere adopted:
a) vertical localization of the state space to suppress correlations beyond a given threshold distance from
each model level by multiplying element-by-element the forecast error covariance with a correlation
matrix with compact support (e.g., [14] [15]); b) to combine the flow-dependent EDA forecast error
variances with climatological (i.e., full rank) vertical forecast error correlation matrices derived from
EDA forecasts over two seasons and geographically varying.

Figure5a shows the vertical temperature forecast error correlation from EDA at the previously selected
overcast location. The figure shows that in the boundary layer below about model level 78 (at about 870
hPa) the temperature error correlations at different modellevels are relatively large. This is consistent
with a well-mixed boundary layer that is decoupled from the above free troposphere. Also evident
is the presence of spurious long range correlations. An eigenvector decomposition of the correlation
matrix shows that the rank of the matrix is insufficient (i.e., less thann = 91) and equal to its theoretical
maximum value (= K−1= 49). As anticipated, we try to address this shortcoming by localizing the raw
correlation function with a correlation function (as described in [9]) that is set to zero beyond a given
distance, here chosen to be reached when the ratior of the distance between two different model levels
and the atmospheric scale height is equal to 2.0. The localized correlation matrix is shown in Figure5b.
The localized correlation matrix looks reasonable as it retains the physically-consistent large correlations
in the short-range while it suppresses the spurious ones at distance larger than two atmospheric scale
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Figure 5: Temperature vertical forecast error correlationfrom a 50-member EDA. Panel (a): raw EDA correla-
tions; panel (b): localized correlation matrix with r= 2.0 (see text).

heights. The rank of the localized correlation matrix is nowfull and equal to 91, the dimension of the
state space at observation location when only the atmospheric temperature profile is included in the state
vector.

As discussed above, it is also possible to consider a regional climatology of vertical forecast error cor-
relations – in addition to the EDA-derived variances – to calculate the signal to noise matrix for a given
linearized observation operator. Vertical correlations are available for temperature, humidity and ozone
over regions of 625-km grid size and averaged over a month to aseason [1]. Recent investigations [13]
show that the seasonal dependence of the correlations is small with respect to their geographical vari-
ability. In Figure6 (left panel) the climatological vertical temperature forecast error correlation over 91
model levels, interpolated at the selected location is shown. A comparison between Figures5b and6 (left
panel) shows that the localization procedure applied to theraw EDA vertical error correlation matrix can
make the correlation length scales of the raw matrix comparable to those characterizing the climatologi-
cal covariance, with still some differences in the upper stratosphere above model level 20. An evaluation
of the eigenvalues of the correlation matrices determined above (see Figure6, right panel) also shows
that the absolute differences between the 49 largest eigenvalues of the climatological and localized EDA
correlation matrices are dramatically reduced with respect to the corresponding difference when the raw
rather than the localized EDA correlation matrix is considered. The localized EDA correlation matrix,
however, is less conditioned than the climatological one due to the lower magnitude of the eigenvalues
corresponding to eigenvectors of the localized-EDA correlation matrix spanning the subspace of the state
space that is not represented by the raw forecast ensemble.

Overall, the comparison of the characteristics of the localized version of the forecast error covariance
based on EDA and of that from a regional climatology shows that it is reasonable to make use of a
localized flow-dependent forecast error covariance for a set of model fields to provide an estimate of
the information content of a number of measurements that is as consistent as possible with the actual
information content provided by the same number of measurements when assimilated in an operational
data assimilation system. In view of these results, the channel selection method applied to IASI data in
this work always made use of a localized EDA-based forecast error covariance to determine an expression
for B to be used in the calculation ofG, as discussed in section2. In particular, the state vector as defined
in this study includes temperature, humidity and ozone components. The temperature components are
defined over 91 atmospheric model levels and one surface level (surface skin temperature), while the
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Figure 6: Temperature vertical forecast error correlationfrom a regional climatology, interpolated to the selected
overcast location (left panel); eigenvalues of temperature vertical forecast error correlation from a regional cli-
matology, localized-EDA and raw EDA at cross-hair location(right panel).

humidity and ozone components are defined over 91 atmospheric model levels. Note that errors on
the temperature (including surface skin temperature), humidity and ozone components of the state are
assumed to be mutually uncorrelated.

The IASI observation error covarianceR used in this study – in brightness temperature units – is that
provided with the 1DVar scheme developed by the Met Office forthe Satellite Application Facility for
numerical weather prediction (NWP-SAF) and includes forward model error. The apodization process
applied during the radiometric calibration of the observations from IASI introduces correlations between
adjacent channels. As the channel selection method used in this work allows for the presence of correla-
tions, there was no need to exclude adjacent channels once a given channel was selected, as done when
sequential methods are used. More generally, the selectionmethod presented here allows the inclusion
of systematic error components that present relatively long-range spectral correlations, which may not be
compatible with channel exclusion procedures. Of this kindare errors arising from imperfect knowledge
of “contaminant” species affecting the estimate of a “target” component of the state vector, such as er-
rors due to incorrect specification of water vapour or ozone concentrations within a temperature retrieval
(see, e.g., [24], his section 4.1.2, [7] and [25], provided that the contaminant and the target species have
independent forecast errors. In this case, the total observation error covarianceRtot to be used in the
place ofR to select channels that are best suited to estimate a target species using the method described
in section2 can be calculated as

Rtot = R+∑
i

Hci Bci H
T
ci
, (22)

whereHci andBci are the jacobian and background error matrices, respectively, for the contaminantci .
Note that the use of the exact expression for the “systematic” componentsHci Bci H

T
ci

of the observation
error covariance makes the procedure, used in [7] and [25] to represent the systematic error covariance
by means of an ensemble of perturbed measurement vectors, here unnecessary. Figure7 shows the
spectral dependence of the standard deviation of the components of the IASI observation error covariance
used in this work for channel selection purposes (left panel) and their spectral correlations for channels
below 2200 cm−1 (right panel).
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Figure 7: Standard deviation of IASI observation error components used in this work. Left panel: noise (including
forward model error contributions) as provided with the 1DVar scheme developed by the Met Office for the NWP-
SAF (red solid line), interference from humidity (blue solid line) and from ozone (green solid line). Right panel:
IASI observation error correlation for channels below 2200cm−1, including contributions due to apodization as
well as humidity and ozone (see Eq.22).

5 Channel selection results

The channel selection method discussed in section2 was applied to each of the 135 clear-sky and 169
overcast columns in our case study, with the aim of selectinga number of humidity-sensitive IASI chan-
nels to be used for all-sky data assimilation experiments inaddition to the temperature- humidity- and
ozone-sensitive IASI channels already assimilated operationally in clear sky. Note that the channel se-
lection figure of merit used here is the number of DFS expressed by a set of measurement channels, but
a figure of merit given by the number of effective DFS (see Eq.11) could have been used instead if the
aim was to select a number of humidity-sensitive IASI channels over a given atmospheric region.

Similarly to the previous studies cited in section1, the first step was to select channels primarily sensitive
to atmospheric temperature profile variations located in the 15 µm carbon dioxide band, in a way to
minimize contaminations from atmospheric species such as water vapour, ozone and carbon monoxide
that are radiatively active in the infrared, as well as to avoid non-local-thermodynamic-equilibrium (non-
LTE) effects and solar contributions. An additional benefitof this channel pre-screening procedure is
that it reduces the nonlinearity of the observation operator, which could make the temperature jacobians
dependent on the state of the contaminant species and potentially lead the data assimilation analysis
to be critically dependent on the minimization first guess: atemperature jacobian, for example, may
result in having its peak at an incorrectly lower height in the troposphere when the short-range model’s
forecast underestimates the mixing ratio of the contaminant species (e.g., water vapour). To this end, 100
temperature-sensitive IASI channels were selected among those with wavenumber less than 900 cm−1

(i.e., out of a total of 1020 IASI channels) at each considered location. For temperature channel selection,
the total observation error covariance matrix included systematic contributions (see Eq.22) to account
for contaminations due to uncertainty on humidity and ozonewhile for humidity channel selection the
only additional systematic contribution was that due to ozone uncertainty.

Once the 100-th channel was added to the list of those maximizing the number of DFS for temperature,
at each location the temperature state vector was augmentedwith the 91 components of the specific
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Figure 8: Number of degrees of freedom for signal (DFS) achieved in clear-sky (left panel) and in overcast (right
panel) conditions when selecting first up to 100 temperature-sensitive IASI channels and then when selecting up
to additional 50 channels that are sensitive to water vapour. The red dashed line represents the number of DFS
obtained when all 8461 IASI channels are considered, at the clear-sky and overcast locations where the largest
values of DFS are achieved for the maximum number of selectedchannels. The number of DFS for the channels
selected at these locations are denoted by red dots, while the number of DFS for the channels selected at the
locations where the largest values of DFS for temperature are achieved for the maximum number of selected
temperature channels are denoted by green dots.

humidity vertical profile. A further set of 50 channels at each location were chosen this time among
those with wavenumber between 1100 cm−1 and 2200 cm−1 (i.e., out of a total of 4399 IASI channels)
to exclude the channels already selected for temperature aswell as to avoid solar contamination and non-
LTE effects. The number of DFS achieved by the selected channels are shown in Figure8. Note that the
two locations (one in clear-sky and one in overcast conditions) where the overall maximum number of
DFS is achieved are different from the locations where the maximum number of DFS for temperature is
captured. Note also that the maximum number of DFS with 150 selected channels in clear-sky (overcast)
conditions is 74.93% (64.52%) of the 15.10 (21.48) DFS achieved when all 8461 IASI channels are
considered, which is still only 8.2% (11.7%) of the value that would be necessary to achieve the ideal
goal of a direct and error-less joint estimate of the whole 183-component state vector.

5.1 Channel selection dependence on the presence of cloud

It is now interesting to discuss the different channel selection results obtained in clear sky and in overcast
conditions. Considering the cloud vertical distribution at overcast locations shown in Figure2, which
indicates that overcast conditions are reached below about800 hPa, it is reasonable to expect that the
most informative water vapour channels selected in overcast conditions have jacobians that are mainly
different from zero above about 800 hPa. In clear sky, however, it is expected that the selected channel
also provide information about humidity in the lower troposphere. In Figure9 are shown the water
vapour jacobians for the ten most informative humidity-sensitive channels at four selected clear sky
and overcast locations. Figure9 indeed confirms that in clear sky the selected channels can provide an
estimate of water vapour mixing ratio over a wider vertical range, although the largest contributions to
the total humidity DFS both in clear-sky and overcast conditions come from channels that are sensitive
to water vapour in the middle and upper troposphere.

The IASI water vapour channel that, in combination with the previously selected 100 temperature chan-
nels, is mostly selected (over 28 out of 135 clear sky locations) to provide the largest number of DFS
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Figure 9: Water vapour jacobians – here defined as the vertical profiles of brightness temperature perturbations
due to a 1% water vapour volume mixing ratio profile perturbation – for the ten most informative humidity-sensitive
channels at four selected clear sky (left panel) and overcast (right panel) locations. In the clear sky case, the four
locations are at (73.46oN,146.67oW), (33.08oN,25.0oE), (16.26oS,120.38oE) and (26.36oS,34.88oE), while in the
overcast case at (89.14oN,100.0oE), (74.58oN,162.0oW), (62.24oS,64.0oE) and (68.97oS,149.33oW). Note that the
first selected channel – whose jacobians at the four selectedlocations are denoted with a red solid line – is
responsible for an average value over the four selected clear sky (overcast) locations of 39.1% (38.6%) of the total
number of water vapour DFS when all the 50 selected channels are considered.

in clear sky is channel 3446 (centred at 1506.25 cm−1), while in overcast conditions is channel 3244
(centred at 1455.75 cm−1) to be mostly selected (over 25 out of 169 overcast locations). Note that IASI
channel 3244 – whose water vapour jacobian when a 1% humiditymixing ratio perturbation is consid-
ered peaks at about 300 hPa – is also selected at 16 out of 135 clear sky locations as the most informative
humidity-sensitive channel in clear sky and it is as well themost important water vapour channel selected
during the “main run” in [5]. This confirms that IASI is most effective in estimating water vapour in the
upper-middle troposphere even in clear sky conditions.

5.2 A strategy to select additional channels for all-sky data assimilation

From section5.1 it follows that it is important to to determine how many timesthe 50 channels selected
at a given clear-sky (overcast) location – regardless theirselection ranking – are also selected at the
other 134 clear-sky (168 overcast) locations. Figure10shows the number of times (in percentage) that a
given channel is selected at the considered clear-sky (overcast) locations relative to the total number of
clear-sky (overcast) locations. The 24 humidity-sensitive channels that are selected over at least 40% of
the clear-sky (overcast) locations and that are also selected over at least 40% of the overcast (clear-sky)
locations are denoted in Figure10 by red dots. These 24 channels – out of the 6750 (8450) non-unique
channels that are selected at all the clear-sky (overcast) locations – accounting for about 3.5 DFS for
humidity at a given clear sky location, populate the final channel selection shortlist. It is important to
note that other criteria may be used to select the final shortlist of n′sel humidity-sensitive channels. For
example, it is possible to apply again the iterative channelselection procedure to thencomm channels that
are selected both at clear-sky and overcast locations (withncomm≥ n′sel) so as to pick then′sel common
channels that provide the largest DFS increments. A difficulty with this strategy, however, is that the
DFS calculation should be performed by considering the appropriate forecast error uncertainty at each
relevant location and it may be difficult to account for the fact that not all commonncomm channels are
selected at the same locations.

As discussed above, the importance of a selected channel depends on both its selection frequencyfi over
the considered locations and the iteration steppi (in %) in which the channel was selected – the earlier the
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Figure 10: The left (right) panel shows the channel selection frequency at the 135 (169) clear-sky (overcast)
locations. Selection frequency values are denoted with reddots for the 24 channels that are selected both in
clear-sky and overcast conditions among the set of channelsthat are selected over at least 40% of all clear-sky or
overcast locations.

step the more important the channel –, defined aspi = 100×(nsel− l i)/(nsel−1) wherensel is the number
of selected channels (in this case 50) andl i is the iteration in which channel i was selected. For example,
l i = 1 means that channel i provides the largest increase in DFS ontemperature and humidity given the
previously selected – in this case 100 – temperature sensitive channels, leading to a value ofpi given by
pi = 100%. The ranking of the selected channeli is then calculated as the the average betweenfi andpi .
A final rankingqi of the shortlisted channels (see Figure11 and Table 1) can be obtained by calculating
the weighted average between the ranking of each channel in clear sky and in overcast conditions, where
the weights reflect the fact that the number of clear sky locations in general (as in this case) differs from
the number of overcast locations in the considered case study. For sake of illustration, let us calculate step
by step the final ranking for one of the shortlisted channels,i.e., channel 2675. This channel was selected
at 68.89% (66.86%) of all clear-sky (overcast) locations and its iteration step percentage averaged over
all considered clear-sky (overcast) locations was 67.46% (75.08%). This means that channel 2675 has
a weighted average selection frequency given byfi = (135× 68.89+ 169× 66.86)/(135+ 169) and
a weighted average iteration step percentage given bypi = (135× 67.46+ 169× 75.08)/(135+ 169)
corresponding to a final rankingqi for channel 2675 given byqi = ( fi + pi)/2 = 69.73%.

In Figure12are shown the humidity jacobians for the channels listed in Table 1 calculated using RTTOV
v11 – with coefficients based on the LBLRTM line-by-line model over 101 vertical levels – at a non-
isolated clear-sky location (i.e. surrounded by other clear-sky columns) over the Mediterranean sea at
36.45◦ N, 17.5◦ W. It is interesting to note that channel 3248, characterized by a humidity jacobian
with the largest (in magnitude) peak at about 200 hPa, is the lowest ranking channel, presumably due
to the signal-offsetting effects of its significant secondary peak with opposite sign in the stratosphere
where the temperature gradient is positive. The relativelylow importance of this channel may be used
as an objective justification for excluding the channel fromthe shortlist, in addition to the practical
consideration that the assimilation of channels with sensitivities over a wide range of heights may be
more challenging due to imperfect knowledge of vertical forecast error correlations.

Finally, it is also interesting to calculate the DFS weighting functions for the selected 24 channels, which
are shown in Figure13 in the case when the atmospheric temperature and humidity standard deviations
are and are not calibrated (see section3). A comparison between Figures12and13shows that the width
of the region where the jacobians of the selected channels are significantly different from zero (between
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Figure 11: Spectral locations (indicated by coloured circles) of a set of 24 humidity-sensitive IASI channels as
selected using the iterative, non-sequential channel selection procedure described in this work. The colour asso-
ciated to the marker used to show the spectral location of channel i reflects the ranking value qi for that channel
(see text).
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Figure 12: Humidity jacobians – here defined as the vertical profiles of brightness temperature perturbations due
to a 1% water vapour volume mixing ratio profile perturbation– of the 24 selected channels listed in Table 1, at a
clear sky location.
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Table 1: Humidity-sensitive IASI channels selected using the procedure described in the text. The IASI channel
numbers in the left-most column shown in italic (bold) are currently operationally monitored (assimilated). See
text for a definition of channel ranking.

IASI channel number wavenumber (cm-1) channel ranking (%) ranking order
2675 1313.5 69.73 12
2868 1361.75 71.50 10
2939 1379.5 55.15 21
2959 1359.5 62.90 16
2991 1392.5 62.55 17
3002 1395.25 73.75 9
3009 1397 76.63 6
3064 1410.75 56.39 20
3093 1418 74.70 8
3105 1421 65.72 13
3244 1455.75 83.36 2
3248 1456.75 39.16 24
3252 1457.75 78.31 5
3312 1472.75 83.25 3
3321 1475 63.87 15
3411 1497.5 70.04 11
3446 1506.25 84.39 1
3453 1508 59.73 19
3509 1522 61.98 18
3527 1526.5 41.16 23
3575 1538.5 53.11 22
3580 1539.75 80.71 4
3653 1558 75.76 7
3658 1559.25 64.21 14
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Figure 13: DFS weighting functions (see text for their definitions) for humidity and corresponding DFS values (for
the whole state vector) achieved by the 24 selected channelslisted in Table 1 at a clear sky location for the non-
calibrated (left panel) and calibrated (right panel) forecast error standard deviation case. The black line shows
the humidity portion of the cumulative DFS weighting function.

about 150 hPa and 800 hPa) coincides with that of the uncalibrated cumulative DFS weighting function.
The calibrated cumulative DFS weighting function has also asimilar dependence with height, although
it becomes negligible above about 270 hPa due to both the rapid decline of the water vapour forecast
error standard deviation with height and the effects of its calibration, which reduce the magnitude of the
standard water vapour mixing ratio by more than 80% in the region above 290 hPa.

6 Summary and conclusions

In this study the iterative channel selection method, whichis in standard use at operational meteoro-
logical centres to select an optimal subset of all availablechannels from advanced infrared sounding
instruments for assimilation, was revisited in order to select channels with correlated errors (due to both
apodization and interference from contaminant species) using a flow-dependent forecast error uncertainty
both in clear-sky and overcast conditions. Also, the standard channel selection figure of merit, defined
by the number of DFS expressed by the channels already selected plus that of an additional candidate
channel, was modified so as to be able to be optionally used forselecting an optimal set of channels for
estimation of a portion of the state space, e.g., tropospheric temperatures. To this end, the new concept
of (cumulative) DFS weighting function was introduced, which can also be used to provide a synthetic,
nondimensional and normalized picture of the region of the state space from which is possible to extract
the (cumulative) contributions to the DFS expressed by a given set of channels. Note, however, that the
“traditional” jacobians provide a measure of sensitivity of the radiation emerging from the atmosphere in
a given channel to infinitesimal variations of the state, in away that depends only on the characteristics
of the instrument and on radiative transfer processes and not on those of the estimation system (i.e., on
the observation and forecast error covariance matrices used for estimation).

The observation-error-correlation-aware channel selection method discussed in this paper was then used
– in its standard figure of merit formulation – to select a set of 100 temperature-sensitive (below 900
cm−1) and 50 humidity-sensitive (between 900 and 2200 cm−1 to avoid solar and non-LTE contamina-
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tion) IASI channels, at a number of clear-sky and overcast locations for a case study in July 2012. Care
was taken to select a final short-list of 24 humidity-sensitive channels from the set of humidity-sensitive
channels that were selected both in clear-sky and overcast conditions over at least 40% of all considered
locations. Finally, a ranking of the shortlisted channels was provided, based on their selection frequency
and average selection iteration step. Future work will investigate the potential of an all-sky assimilation
of (a subset of) the selected humidity-sensitive IASI channels on improving the ECMWF forecast skill
scores over suitable case studies.

Acknowledgements

The author is partly funded by the NERC National Centre for Earth Observation. The author would like
to thank F. Baordo, M. Bonavita, N. Bormann, S. English, R. Eresmaa, A. Geer, M. Hamrud, E. Holm,
C. Lupu, M. Matricardi, T. McNally for their help, suggestions and comments.

References

[1] E Anderson and M Fisher. Developments in 4D-Var and Kalman Filtering. ECMWF Tech. Memo,
247, 2001.

[2] Peter Bauer, Alan J Geer, Philippe Lopez, and Deborah Salmond. Direct 4d-var assimilation of
all-sky radiances. part i: Implementation.Q. J. R. Meteorol. Soc., 136(652):1868–1885, 2010.

[3] M. Bonavita, L. Isaksen, and E. Hólm. On the use of eda background error variances in the ECMWF
4D-Var. Q. J. R. Meteorol. Soc., 138:1540–1559, 2012.

[4] N. Bormann, A. Collard, and P. Bauer. Estimates of spatial and interchannel observation-error
characteristics for current sounder radiances for numerical weather prediction. ii: Application to
airs and IASI data.Q. J. R. Meteorol. Soc., 136(649):1051–1063, 2010.

[5] AD Collard. Selection of IASI channels for use in numerical weather prediction.Q. J. R. Meteorol.
Soc., 133:1977–1991, 2007.

[6] AD Collard and AP McNally. The assimilation of infrared atmospheric sounding interferometer
radiances at ECMWF.Q. J. R. Meteorol. Soc., 135(641):1044–1058, 2009.

[7] A. Dudhia, V.L. Jay, and C.D. Rodgers. Microwindow selection for high-spectral-resolution
sounders.Applied optics, 41(18):3665–3673, 2002.
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[22] P. Räisänen. Effective longwave cloud fraction and maximum-random overlap of clouds: A prob-
lem and a solution.Mon. Wea. Rev., 126(12):3336–3340, 1998.

[23] C.D. Rodgers. Information content and optimization ofhigh-spectral-resolution measurements.
SPIE’s 1996 International Symposium on Optical Science, Engineering, and Instrumentation, pages
136–147, 1996.

[24] C.D. Rodgers.Inverse Methods for Atmospheric Sounding: Theory and Practice. World Scientific
Publishing Co. Pte. Ltd., 2000.

[25] L Ventress and A Dudhia. Improving the selection of IASIchannels for use in numerical weather
prediction.Q. J. R. Meteorol. Soc., 2013.

Technical Memorandum No. 727 21


	1 Introduction
	2 Iterative channel selection with correlated observation errors
	2.1 DFS weighting functions and the effective DFS
	2.2 Description of the selection algorithm

	3 Description of the case study
	4 Evaluation of flow-dependent signal-to-noise characteristics of IASI channels
	5 Channel selection results
	5.1 Channel selection dependence on the presence of cloud
	5.2 A strategy to select additional channels for all-sky data assimilation

	6 Summary and conclusions

