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1 Introduction 
Producing a seasonal forecast from a coupled model does not solely involve running 
the model and viewing the results. After running a coupled model, regardless of its 
complexity, corrections need to be made for systematic errors; due to the model’s 
climate and the observed climate being different.  Typically; simple procedures, 
applied a posteriori, are used to correct these systematic errors. The following section 
discusses different types of systematic errors and methods to correct them. The 
seasonal forecast information is not complete if we have no idea of the forecast skill. 
Computing and providing skill measurements is another crucial step for the use and 
further development of seasonal forecast. The last section describes the verification 
procedures and discusses some outstanding issues that affect the skill assessment. 
Typically, the systematic error estimates and skill measurements are based on a re-
forecast data set. A re-forecast data set consists of a collection of forecasts with start 
and valid dates from the past, usually going back for a considerable number of years. In 
order to ensure consistency between re-forecasts and real-time forecasts, re-forecasts 
are produced specifically with the same model system that is used to produce the real-
time forecasts. The re-forecast data set is an integral part of the real-time seasonal 
predictions. In fact, without this data set, it would be difficult to construct a calibrated 
forecast and any measurement of its skill. The re-forecasts for the current ECMWF 
operational forecasting system (S4) start on the 1st of every month for the years 1981-
2010. The ensemble size is 15 members. The data from these forecasts is available to 
users of the real-time forecast data, to allow them to calibrate their own real-time 
forecast products. Currently ECMWF is running additional re-forecast ensemble 
members for a sub-set of dates, to allow a better sampled characterization of skill. This 
is particularly important for regions and times when the forcing signal is low – a large 
ensemble size is needed to avoid spurious “signals” due to inadequate sampling. 

2 Calibration and systematic model errors 
With systematic model errors we intend any difference between the observed and 
model climatology. The simplest form of systematic error is the mean bias. Figure.1 
shows the mean bias in Sea Surface Temperature (SST) for the summer months (June 
to August). All runs used here are started the first of May and they covered the 30 
years period between1981-2010.  Among other signals, the plot shows that the 
ECMWF model climatology is too cold over the Equatorial Pacific. The panel on the 
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bottom shows the SST bias for the autumn months estimated by the same simulations. 
The mean state of the model at a further forecast range, shows that the cooling over 
the Equatorial Pacific tends to amplify. Figure2 shows the mean biases for SST from 4 
different coupled systems that contribute to the Eurosip multi-model system. It is 
interesting to note that: 

• mean biases are a feature of any model 

• in some regions, the biases are common to different models. For example the 
cold tongue over the equatorial Pacific is a common feature to system a) and b).  

 
Figure 1: SST biases for forecast initiated in May valid for June to August. The biases are computed 
using the re-forecast over 30 years period (1981-2010). 

The model can be systematically different from the observed climate in terms of its 
variance. Figure3 shows SST anomalies averaged over the Central Eq. Pacific (Niño3.4 
area) for the period 1981 to 2010 valid for June to August season. The blue dots 
represent the ensemble means and the red dots are the observed values. The green 
boxes indicate the ensemble forecast distribution for each year. It is easy to note that 
while the inter-annual variations are well captured (anomaly correlation is 0.88) the 
variance of the simulated SST anomalies is larger than the observed variance. For this 
particular season, the ratio between the model inter-annual variance and the observed 
one is in fact 1.30. The over estimation of the SST amplitudes in the Equatorial Pacific 
is seasonally varying and it reaches its maximum for a lead time of two months, 
verifying the boreal spring. In order to correct for some of these systematic model 
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errors, the model output is adjusted a posteriori. This procedure is called calibration. It 
is important to note that this “a posteriori” correction does not remove the effect of 
having an incorrect mean state, since the evolution of the anomalies in a climate 
system is not a linear process.  

 
Figure 2: SST biases from the 4 coupled seasonal forecast models contributing to the Eurosip multi-
model system. Biases are valid for the season December to February and are computed for the 14 
years period 1996-2010. 

 
Figure 3: Time series of SST anomalies averaged over the NINO3 area covering the period  
1981-2010 and valid for JJA. Blue and red dots represent respectively the ensemble mean and  
the observed values. The green boxes represent the distribution of the ensemble forecasts. 
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The calibration used at ECMWF is very simple: 

• Seasonal predictions for any atmospheric variable are issued in term of 
anomalies, in this way the systematic errors associated with the climate drift is 
removed. 

• The SST anomalies over the tropical Pacific (NINO indices) are corrected by the 
process of bias removal and have re-scaled amplitudes. 

For the SST Nino Indices, the variance of the model output is scaled to match the 
observed variance. (As with other skill assessment, this is done in cross-validated 
mode for the re-forecast period, which decreases the calculated scores slightly). Note 
that this technique is not the same as optimizing the amplitude of the forecasts to give 
the best root mean square error, which might give the best re-forecast statistics but 
risks damping forecast anomalies unrealistically towards zero, if the forecast 
performance is poor.  Figure 3 demonstrates the impact of such a variance correction. 
The uncorrected S4 forecasts are appreciably worse than the previous operational 
system 3 (S3) in terms of mean-square skill score (MSSS), and have a large 
overestimation of amplitude. The corrected S4 forecasts have much higher skill than 
S3. Note that because S3 is underactive, re-scaling the amplitude does not typically 
help the MSSS – in most cases, it makes it worse. The reason why this re-scaling is so 
successful is that S4 has a very high anomaly correlation skill in the east Pacific. 

The re-scaling does not prevent the fact that during the simulation the atmosphere 
interacts with too large SST anomalies. However, diagnostics show that the 
atmospheric response to a 1 deg SST anomaly in S4 typically has a realistic spatial 
structure, but the amplitude is too weak (Molteni et al. 2011) – that is, for S4 the 
amplitude of SST teleconnections are more realistic if the SST anomalies are larger 
than observed. In other words, the effect of too large ENSO SST anomalies is 
compensated to a large extent by a reduced sensitivity to those SST anomalies. 

Sometimes people tend to make a distinction between calibrated model output which 
has been corrected for systematic errors and re-calibrated model output which has 
been corrected for model skill in addition to systematic errors. Calibration offers 
significant prospects for forecast improvement. However, one has to acknowledge that 
there is probably no universally optimal calibration of probabilistic forecasts. Different 
users may want to adapt the calibration procedure according to their needs. Someone, 
who would like to predict values at a station location, will calibrate using data from 
that specific station; while someone else who is interested in values on scales of, say 
order of 100 km, would calibrate against analyses or up-scaled observations. Some 
users may need predictions of the joint probability distribution of several variables. An 
alternative way to calibrate probabilistic forecasts is by combining output from several 
models. This is called “the multi-model approach”. The combination of several 
independent models widens the ensemble spread by sampling model errors. Typically, 
the multi-model forecast, a better representation of the full range of uncertainties, is 
more reliable than a single model forecast. 
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3 Skill assessment 
A comprehensive assessment of the seasonal forecast skill is crucial for the correct use 
of the forecast information. In addition, verification statistics provide important feed-
back to the model developers. Typically, for the verification of seasonal forecast 
ensembles, a set of deterministic scores is applied to assess the skill of the ensemble 
mean. Since no single metric can fully represent the quality of the probabilistic 
forecasts, probabilistic forecasts are verified using a wider set of probabilistic scores. 
The Commission for Basic Systems (CBS) of the World Meteorological Organisation 
(WMO) has produced a comprehensive documentation of skill levels measured 
according to a common standard. This initiative was taken to promote: the 
assessments of the scientific quality of long-range forecasts using a standard method 
and its provision to users. Providing verification for a few seasons or even over a few 
years may be misleading and may not give a fair assessment of the skill of any long 
range prediction.  Seasonal predictions should be verified over as long a period as 
possible using consistent re-forecast data.  Although there are limitations on the 
availability of verification data sets and, in spite of the fact that validating numerical 
forecast systems in re-forecast mode requires large computer resources, the re-
forecast period should be as long as possible. WMO Standard Verification System 
suggests a minimum period of 20 years. Typically verification is performed in cross-
validation mode. Since the seasonal forecast skill depends strongly on the season, 
forecast averages for 3 months are evaluated separately for different starting months. 

Figure 5 is an example of deterministic scores for SST forecasts averaged over two key 
areas over the equatorial Pacific (NINO3.4: 5N-5S 170-120w and NINO3 5N-5S 90W-
150W). The top panels show the Root Mean Square Error (solid lines) and the spread 
of the ensemble (dashed lines), with red indicating values for S4 and blue values for S3. 
The bottom panels show the anomaly correlations for the same areas. If an ensemble is 
efficient in predicting forecast uncertainties, the observations should be statistically 
indistinguishable from the ensemble members of the forecast. In other words, most of 
the time the verification is included in the range of predicted values.  The performance 
of the ensemble is therefore assessed by the relation between the spread and the RMSE 
for a long term sample. The closer the RMSE is to the spread, the better is the forecast 
in representing the uncertainties. It is clear from both top panels that the relationship 
between the RMSE and spread is better reproduced in S4 than in S3. 
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Figure 4: Nino 3 statistics for the ECMWF current operational system (S4) with (red) and without 
(blue) variance correction and previous operational system S3 (green). Left: mean-square skill 
scores; right: anomaly amplitude with respect to observations. 

 

 
Figure 5: NINO 3 and NINO3.4 deterministic scores based on 30 years period. Dashed lines 
represent the ensemble spread. 
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The performance of the seasonal predictions is not only measured in terms of ENSO 
scores. Figure 6, for example, shows the 2m temperature local correlation between the 
ensemble mean and era-interim. The regions with orange to red shadings are the 
regions with correlations larger than 0.6. Fig.6 compares the anomaly correlation 
between the current system, S4, and the previous one, S3. The forecasts have starting 
dates on first of May and are valid for the June to August season. The most recent 
system shows an overall higher level of skill over East Pacific and West Africa. Over 
Scandinavia the skill is also improved, although we would need a much larger number 
of cases to estimate the significance of such improvement, since this is a region where 
the signal to noise ratio is rather small. In fact, it is easy to note that there is higher 
predictive skill in the tropics and a much lower skill over the mid-latitudes.  

 
Figure 6: Ensemble mean anomaly correlation for 2m temperature predictions valid for JJA: 
S4 (top) S3 (bottom). 
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The most transparent way to illustrate the performance and characteristics of a 
probabilistic forecast system is the reliability diagram (Figure7), where the x-axis is 
the predicted probability and the y-axis the frequency with which the forecasts verify. 
When the forecast probabilities agree with the frequency of events for this particular 
probability, the distribution should lie along the 45° diagonal. In such a case, the 
probability forecasts are considered reliable. The frequency of forecast probabilities is 
represented by red circles of varying sizes. The probabilities should cluster as far away 
as possible from the climatological frequency, here assumed to be 50%. If 
climatological probability averages were used as forecasts, they would yield perfect 
reliability, since the distribution would be exactly on the 45° diagonal, but this would 
not be very useful. Ideally, we want the forecast system, while mainly reliable, to span 
as wide a probability interval as possible, with as many forecasts as possible away 
from the climatological average and close to 0% and 100%. The property of a 
probabilistic forecast system to spread away from the climatological average is called 
sharpness. Figure 7 shows the reliability for predictions of 2m temperature anomalies 
being in the upper third of the model distribution computed for the 30 years period 
1981-2010. It shows that forecast is more reliable over the tropics where the ENSO 
signal is dominant and the predictability is high.  Over the extra-tropical regions like 
Europe (Figure 8a) the effect of ENSO is less strong the signal to noise ratio is much 
smaller so that the predictability is limited and the uncertainties on the skill estimates 
are larger.  

There are strong variations in the estimate of the skill measure, depending on the 
sample size and the predictability range. Kumar 2009 showed that for high predictive 
ranges like for the tropical regions the spread of the estimates using different sample 
sizes is smaller than for lower predictive ranges. He estimated that to have an accurate 
measure of the anomaly correlation (let’s say an estimate with spread < 0.1) we need 
to consider a sample of 20 years. On the other hand over Europe where the predictive 
skill is much lower (typically acc<0.6) in order to have the same level of spread in the 
estimate of the anomaly correlation we need to consider a sample of about 40 years. 
For a reduced verifying sample the uncertainty on the scores can be large. It is then 
particularly relevant to estimate some confidence intervals in order to set some 
bounds on the expected value of the verification score. This also helps to assess 
whether differences between competing forecast systems are significant.  

The skill of the seasonal predictions is mainly associated with the ability to predict 
ENSO and its influence over remote regions (teleconnections). It follows that in order 
to sample the ENSO variability, the skill analysis should be performed for a sufficiently 
long period. Since the skill assessment of the seasonal predictions is based on the re-
forecast performance, the size of the re-forecast (length and ensemble size) can affect 
the skill estimates. The size of the re-forecast (length and ensemble size) is often a 
subject of debate. Ideally, verification statistics should be based on the real-time 
forecasts. However, this would make it difficult to assess the conditionality to low 
frequency variability such as ENSO. Currently there is no clear answer to this dilemma: 
long re-forecast (30 years) with a large number of ensembles can be simply too 
expensive. 
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Figure 7: Reliability diagram for JJA 2m temperature in the upper tercile category over the tropics 
based on 30 years of re-forecasts. 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 8: Reliability diagram for JJA 2m 
temperature over Europe in the upper 
tercile category for S4 using 15, 31 and 
51 ensemble members. 
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Barnston et al. 2012 analysed the real-time ENSO prediction skills for the period 2002-
2011 looking at 20 (12 dynamical 8 statistical) models. Those models contribute to the 
IRI ENSO prediction plume. The study showed that during the 9 years period (2001-
2011) the ENSO events had smaller amplitudes and presented a larger number of 
alternations among consecutive years. Barnston concluded that the ENSO decadal 
variability can hide the higher skill of todays’ models. Long term trends present in the 
verification period affect the skill assessement. If we consider the surface air 
temperature during the last 30 years this exhibits a warming trend. This global 
warmth in the last decades is a continuation of the upward warming trend observed 
since the mid-20 century in response to the increase of Green House Gases (GHGs). 
Several studies discussed the importance of an adequate representation of the GHGs in 
the coupled climate models used for seasonal predictions (Doblas-Reyes at al. 2006, 
Cai et al. 2009). In the skill assessment based on 30 years period, the ability of 
reproducing the effect of climate change will be accounted for, as well as, the actual 
skill in predicting the year-to-year variations of anomalies. 

Several authors have studied the dependence on ensemble size of the probabilistic 
scores. (e.g. Richardson 2001; Kumar et al. 2001, Mason 2004). Kumar et al. 2001 
showed that the ensemble size of 10-20 members is sufficient to estimate the skill only 
for moderate ENSO cases. Weigel et al. 2007 suggested the use of a de-biased Brier and 
ranked probability skill score to avoid the dependency on the ensemble size and to 
assess forecast with small ensemble size. Fig.8 shows the reliability over Europe for 
the current operational system computed by using the re-forecast with 15 members, 
31 and 51 members. As expected the reliability increases substantially going from 15 
to 51 members. A systematic analysis of reliability estimates as a function of the 
ensemble size is in progress. So far we can only say that the reliability estimates over 
the extra-tropics, being based on a reduced sample size, (15 members of the reforecast 
versus 51 of the real-time forecast) are likely to underestimate the actual reliability of 
the current seasonal forecast system. 
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