
From Integrated to Object-Oriented

Yannick Trémolet and Mike Fisher

ECMWF

3 October 2012

Thanks to many people who have contributed to the project:

Tomas Wilhelmsson, Deborah Salmond, John Hague, George Mozdzynski, Alan Geer,

Anne Fouilloux, Mats Hamrud, code reviewers...

Y. Trémolet OOPS 3 October 2012

4D-Var and Scalability

The current implementation of 4D-Var is not scalable enough for the future.

The code can be optimized routine by routine to increase scalability only up
to a certain point.

Significant leaps in the level of available parallelism can only be achieved
through scientific progress in the formulation of the problem and
minimization algorithms.

The IFS is not flexible enough to test such ideas.

Y. Trémolet OOPS 3 October 2012 1 / 11

Code Design

Since the IFS was designed, in the late 1980’s, the software industry has
progessed tremendously.

We are not the only ones who want a code that is flexible, efficient and
reliable.

The technique that has emerged to answer these needs is called
object-oriented programming.

We are using the latest hardware technology, we should also be looking at
recent mature software development technology.

We have started to re-design our system using this technology in the

Object-Oriented Prediction System (OOPS).

Y. Trémolet OOPS 3 October 2012 2 / 11

Object-Oriented Programming

Organize programs around the data, not the algorithms.

An object is:
I Data,
I Methods that act on the data.

There is no access to the data other than through the defined methods.

Example: Atmospheric state

I Data
F Spectral,
F Grid-point (on various types of grid).

I Methods:
F Read and write,
F Interpolate (to points or change resolution),
F Move forward in time (forecast).

Looking at the methods, notice that “Atmospheric” can be replaced by
“Oceanic” or any other system of interest.

One object can be replaced by another: OO encourages abstraction.

There is much more to OO programming...

Y. Trémolet OOPS 3 October 2012 3 / 11

Object-Oriented Programming

Organize programs around the data, not the algorithms.

An object is:
I Data,
I Methods that act on the data.

There is no access to the data other than through the defined methods.

Example: Atmospheric state
I Data

F Spectral,
F Grid-point (on various types of grid).

I Methods:
F Read and write,
F Interpolate (to points or change resolution),
F Move forward in time (forecast).

Looking at the methods, notice that “Atmospheric” can be replaced by
“Oceanic” or any other system of interest.

One object can be replaced by another: OO encourages abstraction.

There is much more to OO programming...

Y. Trémolet OOPS 3 October 2012 3 / 11

Object-Oriented Programming

Organize programs around the data, not the algorithms.

An object is:
I Data,
I Methods that act on the data.

There is no access to the data other than through the defined methods.

Example: Atmospheric state

I Data
F Spectral,
F Grid-point (on various types of grid).

I Methods:
F Read and write,
F Interpolate (to points or change resolution),
F Move forward in time (forecast).

Looking at the methods, notice that “Atmospheric” can be replaced by
“Oceanic” or any other system of interest.

One object can be replaced by another: OO encourages abstraction.

There is much more to OO programming...

Y. Trémolet OOPS 3 October 2012 3 / 11

Object-Oriented Programming

Organize programs around the data, not the algorithms.

An object is:
I Data,
I Methods that act on the data.

There is no access to the data other than through the defined methods.

Example: Atmospheric state

I Data
F Spectral,
F Grid-point (on various types of grid).

I Methods:
F Read and write,
F Interpolate (to points or change resolution),
F Move forward in time (forecast).

Looking at the methods, notice that “Atmospheric” can be replaced by
“Oceanic” or any other system of interest.

One object can be replaced by another: OO encourages abstraction.

There is much more to OO programming...

Y. Trémolet OOPS 3 October 2012 3 / 11

Object-Oriented Programming

Organize programs around the data, not the algorithms.

An object is:
I Data,
I Methods that act on the data.

There is no access to the data other than through the defined methods.

Example: Atmospheric state

I Data
F Spectral,
F Grid-point (on various types of grid).

I Methods:
F Read and write,
F Interpolate (to points or change resolution),
F Move forward in time (forecast).

Looking at the methods, notice that “Atmospheric” can be replaced by
“Oceanic” or any other system of interest.

One object can be replaced by another: OO encourages abstraction.

There is much more to OO programming...

Y. Trémolet OOPS 3 October 2012 3 / 11

OOPS Design Principles

The problem can be broken into manageable pieces:
I Data assimilation (or ensemble prediction) can be described without knowing

the specifics of a model or observations.
I Minimisation algorithms can be written without knowing the details of the

matrices and vectors involved.

All aspects exist but scientists focus on one aspect at a time.

The code should reflect this: problems that are orthogonal to each other
should be in independent parts of the code.

I The alternatives are code duplication or ever more complex IF statements.

OOPS starts by applying these principles at the highest level.

Y. Trémolet OOPS 3 October 2012 4 / 11

What is OOPS?

Applications Building Blocks Models

●States
●Observations
●Covariances
●Increments...

●Forecast
●4D-Var
●EDA
●EPS
●EnKF...

●Lorenz 95
●QG
●IFS
●NEMO
●Surface...

OOPS

The high levels Applications use abstract building blocks.

The Models implement the building blocks.

OOPS is independent of the Model being driven.

Y. Trémolet OOPS 3 October 2012 5 / 11

OOPS Design

OOPS is independent of the model being driven.

Flexibility (including yet unknown future development) requires that this goes
both ways.

The Models do not know about the high level algorithm currently being run:
I All actions are driven by OOPS,
I All data, input and output, is passed by arguments.

Models interfaces must be general enough to cater for all cases, and detailed
enough to be able to perform the required actions.

I Abstraction.

Y. Trémolet OOPS 3 October 2012 6 / 11

From IFS to OOPS

The high level (object-oriented) code is implemented in C++.

A model can be written in any language as long as:
I It provides an interface to the abstract C++ building blocks.
I It does what it says on the tin (and nothing else).

The IFS “model” will be re-used and remain in Fortran.
I Capitalize on many years of investment in the code.
I Fortran is a good language for numerical code.

All data is progressively moved from modules (global variables) to argument
lists:

I Encapsulation in derived types.

The result is self-contained parts of the IFS that can be used by OOPS.
I The Fortran code called by OOPS can still be called from within the IFS.
I No divergence of code or blocking points.

Y. Trémolet OOPS 3 October 2012 7 / 11

Encapsulating Fortran Code in C++ Classes

C++ Interface (ISO) Fortran

subroutine do_work(c_self)
use iso_c_bindings
use mytype_mod

type(c_ptr) :: c_self
type(mytype), pointer :: self

call c_f_pointer(c_self, self)
call do_it(self)

end subroutine do_work

Class MyClass {
public:
 MyClass() {
 create_data(&data_);
 }

 ~Myclass() {
 delete_data(&data_);
 }

 doSomething() {
 do_work(&data_);
 }

private:
 Fdata * data_;
}

// Give a class to pointer
Class Fdata {};

module mytype_mod

type mytype
! some contents here...
end type mytype

contains

subroutine create(self)
type(mytype) :: self
! allocate and setup...
end subroutine create

subroutine delete(self)
type(mytype) :: self
! deallocate...
end subroutine delete

subroutine do_it(self)
type(mytype) :: self
! do the work...
end subroutine do_it

end module mytype_mod

No static variable of type mytype is declared in the module!

The Fortran module does not know about C++: it is fully usable in the rest
of the Fortran code.

Y. Trémolet OOPS 3 October 2012 8 / 11

Encapsulating Fortran Code in C++ Classes

C++ Interface (ISO) Fortran

subroutine create_data(c_self)
use iso_c_bindings
use mytype_mod

type(c_ptr) :: c_self
type(mytype), pointer :: self

allocate(self)
call create(self)
c_self = c_loc(self)

end subroutine create_data

Class MyClass {
public:
 MyClass() {
 create_data(&data_);
 }

 ~Myclass() {
 delete_data(&data_);
 }

 doSomething() {
 do_work(&data_);
 }

private:
 Fdata * data_;
}

// Give a class to pointer
Class Fdata {};

module mytype_mod

type mytype
! some contents here...
end type mytype

contains

subroutine create(self)
type(mytype) :: self
! allocate and setup...
end subroutine create

subroutine delete(self)
type(mytype) :: self
! deallocate...
end subroutine delete

subroutine do_it(self)
type(mytype) :: self
! do the work...
end subroutine do_it

end module mytype_mod

No static variable of type mytype is declared in the module!

The Fortran module does not know about C++: it is fully usable in the rest
of the Fortran code.

Y. Trémolet OOPS 3 October 2012 8 / 11

Encapsulating Fortran Code in C++ Classes

C++ Interface (ISO) Fortran

subroutine do_work(c_self)
use iso_c_bindings
use mytype_mod

type(c_ptr) :: c_self
type(mytype), pointer :: self

call c_f_pointer(c_self, self)
call do_it(self)

end subroutine do_work

Class MyClass {
public:
 MyClass() {
 create_data(&data_);
 }

 ~Myclass() {
 delete_data(&data_);
 }

 doSomething() {
 do_work(&data_);
 }

private:
 Fdata * data_;
}

// Give a class to pointer
Class Fdata {};

module mytype_mod

type mytype
! some contents here...
end type mytype

contains

subroutine create(self)
type(mytype) :: self
! allocate and setup...
end subroutine create

subroutine delete(self)
type(mytype) :: self
! deallocate...
end subroutine delete

subroutine do_it(self)
type(mytype) :: self
! do the work...
end subroutine do_it

end module mytype_mod

No static variable of type mytype is declared in the module!

The Fortran module does not know about C++: it is fully usable in the rest
of the Fortran code.

Y. Trémolet OOPS 3 October 2012 8 / 11

OOPS Granularity

OOPS requires the definition of a small number of classes:
I In model space:

1. State
2. Increment
3. ErrorCovariance
4. Trajectory

I In observation space:

5. ObsOperator
6. ObsTraj
7. ObsVector

I To make the link:

8. LocalModelValues
9. Locations

This leads to less than 100 methods (Fortran interfaces) to be implemented.

Observation and model errors (biases) will be added.

Y. Trémolet OOPS 3 October 2012 9 / 11

Fortran and C++

If Fortran modules implement C++ classes, can we implement these modules
and stay in Fortran?

Most of the work for going from IFS to OOPS is in implementing the Fortran
modules.

It brings only a fraction of the benefits:

I No polymorphism:
C++ has run-time (inheritance) and compile-time (templates) polymorphism,
Fortran derived types cannot be substituted one for another.

I No unit testing:
C++ (and OO languages) have support for automated testing of classes.

I Old (bad) habits would remain...

A large fraction of the work on the C++ side is already done.

Y. Trémolet OOPS 3 October 2012 10 / 11

OOPS Status

OOPS is working and is being used for scientific studies:
I 3D-Var, 4D-Var, weak-constraint 4D-Var with Lorenz 95 and QG models.
I 3D-Var with IFS (AMSU-A only).

Most of the work is in refactoring the Fortran code (in Fortran).
I 10+ person-years out of 12 to 13 person-years in total for the project.
I The rest is training, coordination and C++ development.

Refactored Fortran code will be easier to maintain.

OOPS is small but brings very high flexibility while maintaining efficiency.

OOPS prepares us for scalability improvements and future scientific
developments.

Y. Trémolet OOPS 3 October 2012 11 / 11

