
© 2012 IBM Corporation

Optimisation of weather applications on
Power and x86 architectures
with a focus on reproducibility

Francois Thomas – Optimisation of weather applications on Power and x86 architectures

Oct, 3rd 2012

© 2012 IBM Corporation

2

IBM Montpellier, France

© 2012 IBM Corporation

3

IBM Montpellier HPC team

L Enault
Engagement leader + Benchmarks

O Lagrasse
Benchmarks

N Rousseau
Benchmarks

François Gibello
Platform Computing

P Vezolle
BlueGene

N Tallet
BlueGene

E Michel
Benchmarks

F Thomas
Benchmarks

Benchmark

Advanced tuning

Client activities

Cloud

© 2009 IBM Corporation 4

Blue Gene / L
PPC 440 @700MHz
596+ TF

Blue Gene / P
PPC 450 @850MHz
1+ PF

2004 2020 2008 2012 2016

P
e

rfo
rm

a
n

c
e

Blue Gene / Q
In progress
20+ PF

 Blue Gene

Goals:
 Lay the ground work for ExaFlop

& usability
 Address many of the power

efficiency, reliability and
technology challenges

Goals:
Three orders of magnitude performance in 10 years
Push state of the art in Power efficiency, scalability, & reliability
Enable unprecedented application capability
Exploit new technologies: PCM, photonics, 3DP

© 2012 IBM Corporation

IBM Intelligent Cluster – it’s about faster time-to-solution

Building Blocks: Industry-leading IBM and 3rd Party components

OS

Management
Servers

Compute
Nodes

Networking

Storage

IBM Intelligent Cluster

Factory-integrated, interoperability-tested
system with compute, storage, networking
and cluster management tailored to your
requirements and supported as a solution!

Cluster
Management

Design

Build

Test

Install

Support

Take the time and risk out Technical Computing deployment

Allows clients to focus on their business
not their IT – that is backed by IBM

© 2012 IBM Corporation

© 2012 IBM Corporation

7

WW HPC Benchmark Centers

Poughkeepsie

Beijing

Montpellier

Bangalore

STG Briefing Center

Software Briefing Center

Design Center

Benchmark Center

Infrastructure Solutions

Linux Center

Grid Computing

High Availability (HACoC)

Dublin

Hursley

© 2012 IBM Corporation

8

Agenda

Live experiments

Reproducibility requirements

Why is that computation not reproducible ?

What can we do ?

Optimisation of weather applications on Power and x86 architectures

© 2012 IBM Corporation

9

Agenda

Live experiments

Reproducibility requirements

Why is that computation not reproducible ?

What can we do ?

Optimisation of weather applications on Power and x86 architectures

© 2012 IBM Corporation

1

0

Let's run the same code on a few systems...

$ for sys in power7 x86 sparc

do

 ssh $sys a.out

done

42.00000000

42.00000001

41.99999998

Optimisation of weather applications on Power and x86 architectures

© 2012 IBM Corporation

1

1

Oh well, let's stick to x86 only...

$ for sys in oldxeon wsm snb snb-mic0

do

 ssh $sys a.out

done

42.00000000

42.00000001

42.00000000

42.00000002

Optimisation of weather applications on Power and x86 architectures

© 2012 IBM Corporation

1

2

Sandy Bridge is what really matters today...

[snb]$ for mpi*omp in 48*8 96*4 192*2

do

 a.out

done

42.00000000

42.00000001

42.00000000

Optimisation of weather applications on Power and x86 architectures

© 2012 IBM Corporation

1

3

At least, “that” should work...

[snb]$ for repetitions in 1..10

do

 a.out

done

42.00000000

42.00000000

42.00000000

42.00000001

42.00000000

Optimisation of weather applications on Power and x86 architectures

© 2012 IBM Corporation

1

4

Agenda

Live experiments

Reproducibility requirements

Why is that computation not reproducible ?

What can we do ?

Optimisation of weather applications on Power and x86 architectures

© 2012 IBM Corporation

1

5

Maybe you can live without reproducibility ?

 All floating point computations are wrong anyway

 Initial conditions can be very uncertain too (ensemble)

 Numerical schemes should be made insensitive to tiny errors

 That's what Intel compilers think at least...

Optimisation of weather applications on Power and x86 architectures

© 2012 IBM Corporation

1

6

Or maybe you need reproducibility after all ?

 Regulatory requirement

– Nuclear reactors design

– Automotive crash simulation

– Aircraft engines

 Weather and climate studies

 Software QA

– Bit wise reproducibility is a great debugging aid !

 Can only be harder to achieve in the future :-(

Optimisation of weather applications on Power and x86 architectures

© 2012 IBM Corporation

1

7

Various flavours of non-reproducibility

 From run to run

– Nothing changed

– Fixed mpi*omp or even a sequential program

– On the same machine

 From mpi*omp to mpi'*omp'

 From one set of compiler options to another (Debug vs Release)

 From one architecture to another

Optimisation of weather applications on Power and x86 architectures

© 2012 IBM Corporation

1

8

Agenda

Live experiments

Reproducibility requirements

Why is that computation not reproducible ?

What can we do ?

Optimisation of weather applications on Power and x86 architectures

© 2012 IBM Corporation

1

9

How can we get non-reproducible results from run to run ?

 It takes a combination of

– Code sensitive to the order of computations

• « reduction » operations (DDOT, DGEMM)

– A SIMD instruction set (SSE, AVX, VSX)

– Non deterministic memory alignment

– In your code or in someone else's (MKL, ESSL)

 malloc()/allocate() do not always return 16 bytes (SSE/VSX) or 32 (AVX) aligned data

 Heap and stack alignment can vary due to

– varying run time conditions (date, directory, pid, ...)

– ASLR (Address Space Layout Randomization)

• check /proc/sys/kernel/randomize_va_space

 The compiler will process loops with a prologue (scalar) up to the first aligned index, the

loop body (SIMD) and an epilogue (scalar).

Optimisation of weather applications on Power and x86 architectures

© 2012 IBM Corporation

2

0

Why can we get non-reproducible results from run to run ?

double ddot(int n,

 double *a,double *b)

{

 double sum=0.0;

 int i;

 for(i=0;i<n;i++) {

 sum+=a[i]*b[i];

 }

 return sum;

}

$ icc -O2/-O3 -xAVX -S ddot.c

Optimisation of weather applications on Power and x86 architectures

… loop prologue

..B1.12:

 vmovupd (%rsi,%r8,8), %xmm2

 vmovupd 96(%rsi,%r8,8), %xmm10

 vmulpd (%rdx,%r8,8), %ymm3,

%ymm4

 vaddpd %ymm4, %ymm1, %ymm8

… unrolled by 4

 je ..B1.12

… loop epilogue

vmulpd packed double (AVX)

The result depends on alignment of a and b

© 2012 IBM Corporation

2

1

Why can we get non-reproducible results from run to run ?

double ddot(int n,

 double *a,double *b)

{

 double sum=0.0;

 int i;

 for(i=0;i<n;i++) {

 sum+=a[i]*b[i];

 }

 return sum;

}

$ gcc -O3 -mavx -ftree-vectorize -S ddot.c

Optimisation of weather applications on Power and x86 architectures

L4:

 vmovsd 8(%rsi,%r8,8),%xmm0

 vmulsd 8(%rdx,%r8,8),%xmm0,

%xmm4

 vaddsd %xmm4, %xmm3, %xmm0

 jb L4

vmulsd scalar double (scalar AVX)

© 2012 IBM Corporation

2

2

Why can we get non-reproducible results from run to run ?

double ddot(int n,

 double *a,double *b)

{

 double sum=0.0;

 int i;

 for(i=0;i<n;i++) {

 sum+=a[i]*b[i];

 }

 return sum;

}

$ icc -O2/-O3 -xAVX -fp-model precise

Optimisation of weather applications on Power and x86 architectures

..B1.4:

 vmovsd 8(%rsi,%r8,8),%xmm0

 vmulsd 8(%rdx,%r8,8),%xmm0,

%xmm4

 vaddsd %xmm4, %xmm3, %xmm0

 jb ..B1.4

vmulsd scalar double (scalar AVX)

© 2012 IBM Corporation

2

3

Agenda

Live experiments

Reproducibility requirements

Why is that computation not reproducible ?

What can we do ?

Optimisation of weather applications on Power and x86 architectures

© 2012 IBM Corporation

2

4

What can you do ?

 Don't use SIMD at all

 Don't use SIMD for reductions

 Don't use reductions

– Cast a DGEMM in terms of DAXPYs rather than DDOTs

 Use « safe » compiler options

 Don't use MKL, it might do bad things without warning you

– ESSL's DGEMM is reproducible and alignment safe

 Wrap your memory allocations so that they return consistently aligned addresses

Optimisation of weather applications on Power and x86 architectures

© 2012 IBM Corporation

2

5

A nice feature of the GNU linker : wrap

$ cat wrap_malloc.c

#include <stdlib.h>

void *__wrap_malloc(size_t bytes)

{

 void *p;

 if ((posix_memalign(&p,128,bytes) != 0)) { // 128=SIMD length

 p=(void *)0;

 }

 return p;

}

$ gcc -Wl,-wrap,malloc -o a.out main.o objects.o wrap_malloc.o

Optimisation of weather applications on Power and x86 architectures

All references to malloc() will be resolved in our __wrap_malloc() routine

© 2012 IBM Corporation

2

6

(Sort of) Safe Intel compiler options

 -O3 -xAVX -fp-model precise -assume protect_parens -prec-div -prec-sqrt -no-ftz -nolib-

inline

– -fp-model precise : Won't SIMDize reductions

– -assume protect_parens : Comply with parentheses

– -prec-div : no fancy divide

– -prec-sqrt : no fancy sqrt

– -no-ftz : do not flush denormals to zero

– -nolib-inline : do not use inline optimized math functions

 Performance hit : 10-15-20 % ?

 -no-vec will turn off SIMD code generation altogether

 Recover performance using the #pragma simd/!DIR$ SIMD directives around hot loops

Optimisation of weather applications on Power and x86 architectures

© 2012 IBM Corporation

2

7

Recent additions to Intel compilers and MKL to help reproducibility

 The very latest Intel Composer XE 2013 and MKL 11.0 bring features around « CBWR » :

Conditional Bit-Wise Reproducibility

 MKL contains multiple code paths for the same function (SSE2, SSE4.2, AVX). An

application can require that the same code path be followed on all platforms

(MKL_CBWR=COMPATIBLE, SSE4_2, AVX,...)

 For OpenMP reductions, use KMP_DETERMINISTIC_REDUCTION=yes

Optimisation of weather applications on Power and x86 architectures

© 2012 IBM Corporation

2

8

OpenMP and MPI have a lot to offer in the reproducibility violation
department

 !OMP$ PARALLEL FOR REDUCTION (+:SUM)

 OMP_SCHEDULE=dynamic or guided

– Calling for trouble if the order of computations within the loop does matter

 How reproducible is MPI_SUM in MPI_Allreduce ?

 Just like OMP_SCHEDULE :

DO I=1,NOBS

 CALL_MPI_RECV(A,1,MPI_REAL8,MPI_SOURCE_ANY, MPI_TAG_ANY,...)

 SUM=SUM+A

ENDDO

Optimisation of weather applications on Power and x86 architectures

© 2012 IBM Corporation

2

9

What's next ?

 Bit wise reproducibility across <runs,MPI,OpenMP,what not> is nice (brings trust)

 It may hurt performance, although compilers can help by selecting critical areas of code

 Involves components that may not be under your control (math libraries, parallel runtime)

 Will be harder to achieve in the future (NTV, higher levels of parallelism, more SIMD, hybrid

systems, accelerators, FPGA)

 Does not play nice with performance and power consumption

 Reproducibility is partially addressed by people studying the resilience of HPC

applications

 A lot to be done in little time (2018 is approaching fast)

 My post-Mayascale prediction : « The weather forecast for Dec, 21st, 2018 could be different

from the weather forecast for Dec, 21st, 2018, itself different from the weather forecast for

Dec, 21st, 2018. »

Optimisation of weather applications on Power and x86 architectures

