
Parallel I/O for Earth System Modelling

Luis Kornblueh, Deike Kleberg and Uwe Schulzweida
Max Planck Institute for Meteorology

supported by
Mathias Pütz, CRAY

Christoph Pospiech, IBM
Thomas Jahns, Moritz Hanke, Jörg Behrens, and Mathis Rosenhauer, DKRZ

October 3, 2012

L. Kornblueh et al. Parallel I/O October 3, 2012 1 / 26

Scaling optimization required

0 2 4 6 8 10 12 14 16 18 20 22 24
0

2

4

6

8

10

12

14

16

18

20

22

24

Power6 nodes

Scaling

L. Kornblueh et al. Parallel I/O October 3, 2012 2 / 26

Classical root I/O explains scaling

0 3000 6000 9000 12000 15000

total

model

output

12875

7500

5375

Runtime [s]

Model part

classical root I/O

L. Kornblueh et al. Parallel I/O October 3, 2012 3 / 26

Atmospheric and Oceanographic Data

Constraints

Large amounts of data

Comparable small spatial extent (O(2, . . . , 4))

Large Time extent (O(4, . . . , 7))

Large Number of variables (O(2, . . . , 3))

L. Kornblueh et al. Parallel I/O October 3, 2012 4 / 26

... continued ...

Requirements

long term metadata and data storage

standardization

compression

Solutions

WMO GRIB standard

lowest entropy data subsampling

two stage compression: lossy entropy based and lossless compression
of resulted image — metadata uncompressed!

L. Kornblueh et al. Parallel I/O October 3, 2012 5 / 26

I/O improvements possible

Improvement by additional packing of the BDS data

Resolution GRIBZip2d grib-szip gzip (external)
Source Frauenhofer MPI-M GNU

T42 L19 2.32 2.13 2.06
T63 L31 1.85 1.78 1.35
T106 L60 5.17 4.75 3.81
T213 L31 3.09 3.06 2.41

mean 3.03 2.93 2.15

Remark 1
netCDF stores 4 byte, grib in average 2 byte — compression ratio given with respect to
the later.

Remark 2
szip has a patent and copyright issue. We (most work by Mathis Rosenhauer)
reimplemented the scheme from the CCSDS reference with the extensions from May
2012. The license is the BSD license now!

L. Kornblueh et al. Parallel I/O October 3, 2012 6 / 26

I/O improvements possible

Improvement by additional packing of the BDS data

Resolution GRIBZip2d grib-szip gzip (external)
Source Frauenhofer MPI-M GNU

T42 L19 2.32 2.13 2.06
T63 L31 1.85 1.78 1.35
T106 L60 5.17 4.75 3.81
T213 L31 3.09 3.06 2.41

mean 3.03 2.93 2.15

Remark 1
netCDF stores 4 byte, grib in average 2 byte — compression ratio given with respect to
the later.

Remark 2
szip has a patent and copyright issue. We (most work by Mathis Rosenhauer)
reimplemented the scheme from the CCSDS reference with the extensions from May
2012. The license is the BSD license now!

L. Kornblueh et al. Parallel I/O October 3, 2012 6 / 26

Solution strategy

1 decompose I/O in a way that all variables are distributed over the
collector/concentrator PEs (I/O PEs)

2 store each compute PEs data in buffers to be collected by collector
PEs (I/O PEs) — buffer should reside in RDMA capable memory
areas

3 instead of doing I/O, copy data to buffer and continue simulation

4 collectors collect their respectable data (gather) via one-sided (RDMA
based) MPI calls and do the transpose

5 compress each individual record

6 write ... sort of

L. Kornblueh et al. Parallel I/O October 3, 2012 7 / 26

Solution strategy

1 decompose I/O in a way that all variables are distributed over the
collector/concentrator PEs (I/O PEs)

2 store each compute PEs data in buffers to be collected by collector
PEs (I/O PEs) — buffer should reside in RDMA capable memory
areas

3 instead of doing I/O, copy data to buffer and continue simulation

4 collectors collect their respectable data (gather) via one-sided (RDMA
based) MPI calls and do the transpose

5 compress each individual record

6 write ... sort of

L. Kornblueh et al. Parallel I/O October 3, 2012 7 / 26

Solution strategy

1 decompose I/O in a way that all variables are distributed over the
collector/concentrator PEs (I/O PEs)

2 store each compute PEs data in buffers to be collected by collector
PEs (I/O PEs) — buffer should reside in RDMA capable memory
areas

3 instead of doing I/O, copy data to buffer and continue simulation

4 collectors collect their respectable data (gather) via one-sided (RDMA
based) MPI calls and do the transpose

5 compress each individual record

6 write ... sort of

L. Kornblueh et al. Parallel I/O October 3, 2012 7 / 26

Solution strategy

1 decompose I/O in a way that all variables are distributed over the
collector/concentrator PEs (I/O PEs)

2 store each compute PEs data in buffers to be collected by collector
PEs (I/O PEs) — buffer should reside in RDMA capable memory
areas

3 instead of doing I/O, copy data to buffer and continue simulation

4 collectors collect their respectable data (gather) via one-sided (RDMA
based) MPI calls and do the transpose

5 compress each individual record

6 write ... sort of

L. Kornblueh et al. Parallel I/O October 3, 2012 7 / 26

Solution strategy

1 decompose I/O in a way that all variables are distributed over the
collector/concentrator PEs (I/O PEs)

2 store each compute PEs data in buffers to be collected by collector
PEs (I/O PEs) — buffer should reside in RDMA capable memory
areas

3 instead of doing I/O, copy data to buffer and continue simulation

4 collectors collect their respectable data (gather) via one-sided (RDMA
based) MPI calls and do the transpose

5 compress each individual record

6 write ... sort of

L. Kornblueh et al. Parallel I/O October 3, 2012 7 / 26

Solution strategy

1 decompose I/O in a way that all variables are distributed over the
collector/concentrator PEs (I/O PEs)

2 store each compute PEs data in buffers to be collected by collector
PEs (I/O PEs) — buffer should reside in RDMA capable memory
areas

3 instead of doing I/O, copy data to buffer and continue simulation

4 collectors collect their respectable data (gather) via one-sided (RDMA
based) MPI calls and do the transpose

5 compress each individual record

6 write ... sort of

L. Kornblueh et al. Parallel I/O October 3, 2012 7 / 26

File writing in ECHAM based on cdi-pio

write

Compute Pes I/O Pes

time step

time step

copy streamWriteVar
GRIB

NetCDF

filesystem

GPFS

Lustre

libcdi

gather

After calculating one I/O timestep the compute processes copy their data to a buffer and
go on calculating till the next I/O timestep.

I/O processes fetch the data using MPI one sided communication.

Gather and transpose of the data is based on callback routines supplied by the model.

Most important property

Compute processes are not disturbed by file writing.

L. Kornblueh et al. Parallel I/O October 3, 2012 8 / 26

Known difficulties

single offload step requires large memory on offload-node (requires
eventually changes for Linux cluster and Cray XT architecture type
machines, and maybe for IBM BlueGene)

generates network jitter (RMA access to all compute nodes
concurrent with computing nodes internal communication)

filesystem jitter due to system bottlenecks (total bandwidth 30 GB/s,
2 GB/s per node, but 256 nodes)

L. Kornblueh et al. Parallel I/O October 3, 2012 9 / 26

What to optimize?

Search strategy

1 get to know your systems I/O capabilities!

2 measure the I/O bandwidth achieved

3 build a test case for your I/O library

4 profile your testcase

5 track down to offending level

6 check selected counters for offending code part

L. Kornblueh et al. Parallel I/O October 3, 2012 10 / 26

What to optimize?

Search strategy

1 get to know your systems I/O capabilities!

2 measure the I/O bandwidth achieved

3 build a test case for your I/O library

4 profile your testcase

5 track down to offending level

6 check selected counters for offending code part

L. Kornblueh et al. Parallel I/O October 3, 2012 10 / 26

What to optimize?

Search strategy

1 get to know your systems I/O capabilities!

2 measure the I/O bandwidth achieved

3 build a test case for your I/O library

4 profile your testcase

5 track down to offending level

6 check selected counters for offending code part

L. Kornblueh et al. Parallel I/O October 3, 2012 10 / 26

What to optimize?

Search strategy

1 get to know your systems I/O capabilities!

2 measure the I/O bandwidth achieved

3 build a test case for your I/O library

4 profile your testcase

5 track down to offending level

6 check selected counters for offending code part

L. Kornblueh et al. Parallel I/O October 3, 2012 10 / 26

What to optimize?

Search strategy

1 get to know your systems I/O capabilities!

2 measure the I/O bandwidth achieved

3 build a test case for your I/O library

4 profile your testcase

5 track down to offending level

6 check selected counters for offending code part

L. Kornblueh et al. Parallel I/O October 3, 2012 10 / 26

What to optimize?

Search strategy

1 get to know your systems I/O capabilities!

2 measure the I/O bandwidth achieved

3 build a test case for your I/O library

4 profile your testcase

5 track down to offending level

6 check selected counters for offending code part

L. Kornblueh et al. Parallel I/O October 3, 2012 10 / 26

I/O capabilities

An example: DKRZ

256 compute nodes, 12 file server, 6 PB filesystem, 4 HPSS server, 60
PB tape archive

total I/O bandwidth to disk 30 GB/s

per node max. I/O bandwidth 2 GB/s

1600 users

max. 96 post-processing jobs

unknown number of production jobs

L. Kornblueh et al. Parallel I/O October 3, 2012 11 / 26

Offending code parts

Legacy in libraries

portable double to float conversion (199x) taking into account CRAY,
VAX , IBM, and IEEE FP formats

C max/min search loop

encoding kernel
I mixed floating point/integer operation
I very small number of operations

L. Kornblueh et al. Parallel I/O October 3, 2012 12 / 26

Analysis for optimization strategy

Caution: Assembler reading required

understand roughly how your CPU works

need to read Assembler (not that bad, feels like using a pocket
calculator), you get an idea what the compiler is doing

compare code of different optimization levels

try to find the patterns, you would expect for fast code

L. Kornblueh et al. Parallel I/O October 3, 2012 13 / 26

An example

/* datatype information only */

long datasize

double data[datasize];

unsigned char *lGrib;

long i, z;

unsigned long ival;

double dval , reference , factor;

/* offending code */

for (i = 0; i < datasize; i++)

{

dval = ((data[i] - reference) * factor + 0.5);

ival = (unsigned long) dval;

lGrib[z] = ival >> 8;

lGrib[z+1] = ival;

z += 2;

}

L. Kornblueh et al. Parallel I/O October 3, 2012 14 / 26

Classical root I/O

0 3000 6000 9000 12000 15000

total

model

output

12875

7500

5375

Runtime [s]

Model part

classical root I/O

L. Kornblueh et al. Parallel I/O October 3, 2012 15 / 26

cdi based asynchronous parallel I/O

0 3000 6000 9000 12000 15000

total

model

output

8173

8053

120

Runtime [s]

Model part

cdi I/O

L. Kornblueh et al. Parallel I/O October 3, 2012 16 / 26

Compare

0 3000 6000 9000 12000 15000

total

model

output

8173

8053

120

Runtime [s]

Model part

cdi I/O

L. Kornblueh et al. Parallel I/O October 3, 2012 17 / 26

Compare

0 3000 6000 9000 12000 15000

total

model

output

8173

8053

120

12875

7500

5375

Runtime [s]

Model part

cdi I/O root I/O

L. Kornblueh et al. Parallel I/O October 3, 2012 17 / 26

Compare

0 3000 6000 9000 12000 15000

total

model

output

8173

8053

120

12875

7500

5375

Runtime [s]

Model part

cdi I/O root I/O

L. Kornblueh et al. Parallel I/O October 3, 2012 17 / 26

What next?

Scaling experiments

Further optimizations of details

Implementation in all MPIM models

Finish Implementation in EC-Earth

Optimize GRIB decoding

Optimize libaec

Intensivy collaboration on solving issues in each single component

Get library zoo manageable

L. Kornblueh et al. Parallel I/O October 3, 2012 18 / 26

Library zoo

model instance cdi

grib_api

hdf5

libpng

openjpeg/jasper

libaec

zlib

yaxt MPI

license change required

 szip

pnetcdf

netcdf

L. Kornblueh et al. Parallel I/O October 3, 2012 19 / 26

What is CDO ?

CDO is a collection of tools to process and analyze data from climate and
NWP models.

File format conversion: GRIB ⇔ netCDF

Interpolation between different grid types and resolution

Portability (ANSI C99 with some POSIX extentions)

Performance (fast processing of large datasets, muti-threaded)

Modular design and easily extendable with new operators

UNIX command line interface

Tested on many UNIX/Linux systems, Cygwin, and MacOS-X

L. Kornblueh et al. Parallel I/O October 3, 2012 20 / 26

Data I/O Interface
Part of CDO is the I/O interface CDI (Climate Data Interface) which it
shares with all major MPI-M climate models.

GRIB1 via CGRIBEX
(MPI-M)

GRIB2 via GRIB API
(ECMWF)

netCDF, CF-convention
(UNIDATA)

SERVICE, EXTRA, IEG
(MPI-M binary formats)

GRIB support includes highly
efficient, fast compression
algorithms.

netCDF 3

CDI

binary

CDO

C or POSIX I/O. POSIX I/O

netCDF 4
(HDF5)

SE
RV

IC
E,

 E
XT

RA
, I

EG

GR
IB

1

I/O layer (buffering)

CDI Core

C and Fortran API

ECHAM

MPIOM
ICON

Ex
te

rn
al

 li
br

ar
ie

s
(o

pt
io

na
l)

GR
IB

2

ne
tC

D
F3

ne
tC

D
F4

H
D

F5

GRIB 1 GRIB 2

L. Kornblueh et al. Parallel I/O October 3, 2012 21 / 26

Available Operators

CDO provides more than 400 operators which can be pipelined on thread
level. CPU time intensive operators are OpenMP parallelized.

Main categories Description
File information Print information about datasets
File operations Copy, split and merge datasets
Selection Select parts of a dataset
Comparision Compare datasets
Modification Modify data and metadata
Arithmetic Arithmeticly process datasets
Statistical values Ensemble, field, vertical and time statistic
Interpolation Horizontal, vertical and time interpolation
Import/Export HDF5, binary, ASCII
Climate indices ECA Indices

L. Kornblueh et al. Parallel I/O October 3, 2012 22 / 26

Supported Grids

A large set of grids is sup-
ported including spectral-
and Fourier-coefficients.
Gaussian grids, regular
and rotated lat-lon grids,
conformal mapped quadri-
lateral grids, and finally
general unstructured
grids.

Gaussian grid

ECHAM

curvilinear grid

MPIOM

hexagonal grid

GME

triangular grid

ICON

All major models world wide are supported (COSMOS, CLM, ECHAM,
GME, HIRLAM, ICON, IFS, MPIOM, NEMO, and REMO — only to
mention those used mostly in Germany).

L. Kornblueh et al. Parallel I/O October 3, 2012 23 / 26

Satellite-data Support

EUMETSAT’s Climate Monitoring
Satellite Application Facility pro-
vides satellite-derived geophysical
parameter for climate monitoring.
Data sets contain several cloud
parameters, surface albedo, radi-
ation fluxes, temperatur and hu-
midity profiles. These products
are stored in HDF5. DWD has
funded an import CDO operator
import cmsaf.

toa radiation

cloud cover

surface radiation

humidity

L. Kornblueh et al. Parallel I/O October 3, 2012 24 / 26

Community Support

The rapidly increasing number of CDO installations and users create a
very high demand of support. A fully featured development platform is
available to support the community. The CDO community page was
funded by the European Commission infrastructure project IS-ENES.

User wiki

Documentation

Bug tracking system

User forums

Download area

Repository access

http://code.zmaw.de/projects/cdo

L. Kornblueh et al. Parallel I/O October 3, 2012 25 / 26

What comes next?

Web Services (EUDAT, EU funded)

Script-language interface (Python, Perl, Ruby, . . .)

Add simple standardized plotting capabilities (Magics++, ECMWF)

Add more functionalities

Performance improvements (ENES funded)

Parallel asynchronous CDI, Deike Kleberg and Luis Kornblueh
(ScaLES, BMBF funded)

L. Kornblueh et al. Parallel I/O October 3, 2012 26 / 26

	Why parallel I/O?
	Design backgrounds
	Strategies
	Implementation
	Results
	cdo/cdi

