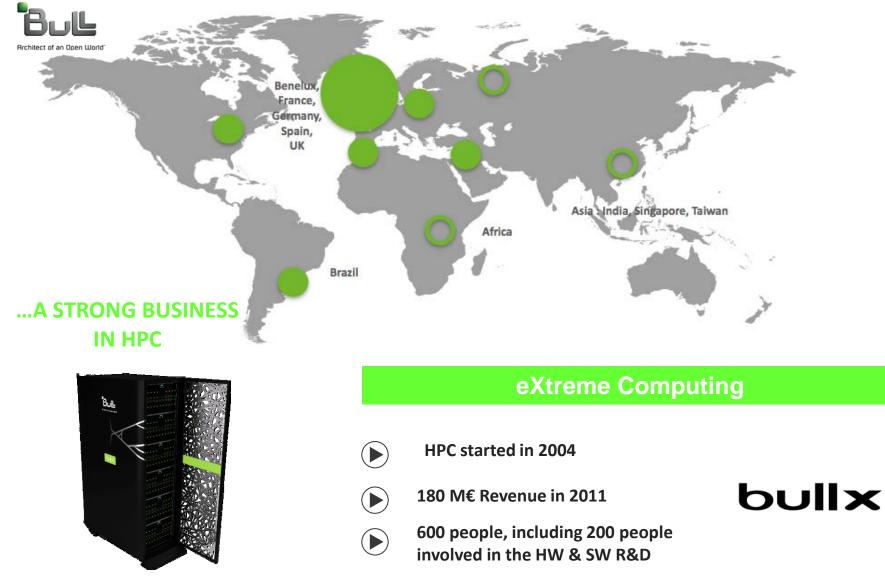


Architect of an Open World"

Weather and Climate simulations with BULL Technology



02/10/2012

Franck VIGILANT HPC Consultant Applications & Performances Team Extreme Computing Business Unit

A group operating in over 50 countries

WITH ITS CENTER OF GRAVITY I N EUROPE...

Some key realizations for eXtreme Computing

One step ahead

With **Tera100**, Bull provided to CEA the first Petaflopic Supercomputer in Europe

> Leading Innovation

And also...

Think for/with users

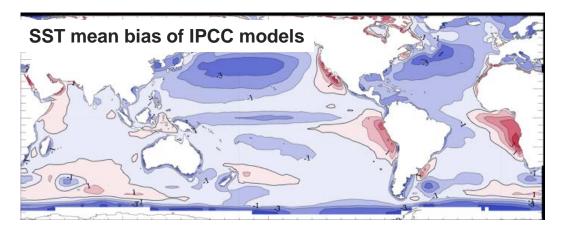
With 2 PFlops, **Curie** is one of the most powerful supercomputer in Europe, configured with **4GB/core, an IB Fat tree** topology, **250GB/s IO bandwidth** to cover any kind of applications.

> Understanding HPC Users

One HPC key player

Bull has installed more than 4,5 Pflops (peak) within **Tera100**, **Curie and Helios** systems.

> 3 TOP20 Configurations


A&P: Climate and Weather Forecasts Interests

Pulsation

PULSATION: Peta scale mULti-gridS ocean-ATmosphere coupled simulatIONs

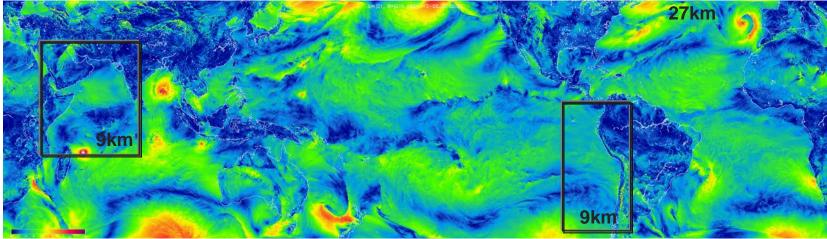
Climate modeling project from the PRACE program (PaRtnership for Advanced Computing in Europe). Started in february 2012

Interest: upscalling processes in coastal upwelling areas

Objectives

- Quantify the impact of small processes on global climate
- Reduce large scale and recurrent biases in climate simulations
- Method: multi scales coupled models

Collaboration



Pulsation

PULSATION benefits form the 'Grand Challenge' phase of CURIE

- runnning very large scale simulation
- o enables researchers to achieve major scientific advances.

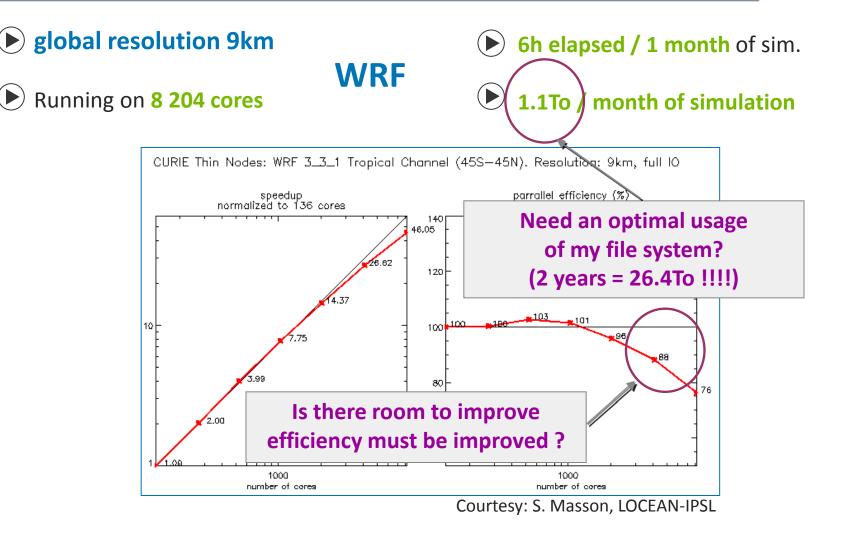
Target: Tropical channel - embedded zooms on both componnents (ocean and atmosphere) - 27km tropical grid + 9km zooms

Courtesy: S. Masson, LOCEAN-IPSL

- Coupled simulation based on NEMO, WRF & OASIS
- **19 millions of CPU hours**
- **140 To** of data to be expected
- Simulations up to 16 000 cores

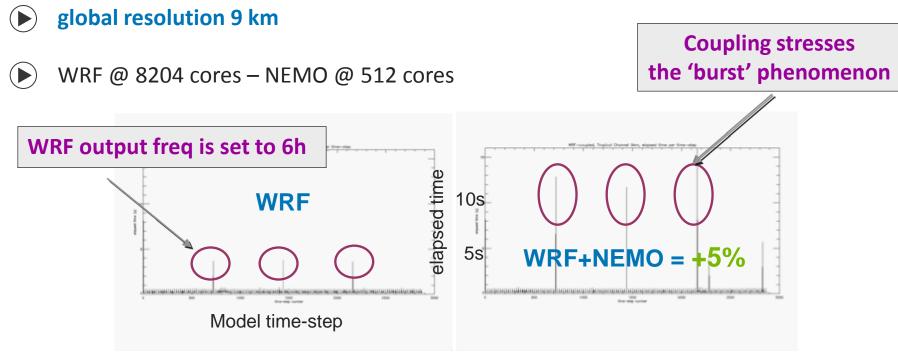
6

MODEL, combinaison of state-of-the-art and popular models:


Atmosphere: Weather Research and Forecasting (WRF)
Ocean: Nucleus for European Modeling of the Ocean (NEMO)
Coupler: Ocean Atmosphere Sea Ice Soil and Model Coupling Toolkit (OASIS3-MCT)

Horizontal resolutions: from 27 km down to 9 km, tropical channel (45°S-45°N)
2 years simulation (x2 configurations)

WRF and NEMO are among the very few models able to combine:


- high-resolution simulations at global scale
 - 2-way embedded zoom

OASIS3-MCT is used as library, so only 2 executables are needed

76% of parallel efficiency on 8 204 cores (based on 136 cores run)

WRF + NEMO:

Courtesy: S. Masson, LOCEAN-IPSL

Coupling: only 5% degradation w.r.t WRF alone ③

any bottlenecks in my code ?

What about MPI communications ?

IO optimization needed ?

Vectorisation ?

Cache miss ?

10

Better understand your application easily....

bullx Prof

Main features:

- □ able to characterized a code over a large panel of functions such as:
 - ✓ Function profiling
 - ✓ MPI profiling
 - ✓ Hardware counter profiling
 - ✓ **IO profiling**
- no dependance on MPI layer (OpenMPI, bullxMPI, Intel MPI)

light tool

easy to handle

Better understand your application easily....

bullx Prof

Only one command line:

\$ **bullxpprof** [bxprof-args] **program** [prog-args]

Or

\$ mpirun [mpirun-args] bullxpprof [bxprof-args] program [prog-args]

Outputs:

- **USER** report 0
- **MPI profile** 0
- I/O profile 0
- **HWC report** 0

12

Timing report - summary

A global overview of the simulation

Process wa Number of Estimated Estimated	processes		50.772 64 21.39 33.43					
Region	Min Time	[rank]		Max ti	me [rank]	Avg time		% walltime
ALL USER MPI I/O		50.603 15.490 32.955 0.110	sec [sec [20] 8] 29] 1]	50.772 sec [17.512 sec [35.141 sec [0.841 sec [0] 45] 1] 60]	50.681 sec 16.308 sec 33.741 sec 0.632 sec	100.00 % 32.18 % 66.57 % 1.25 %

Timing report – USER region

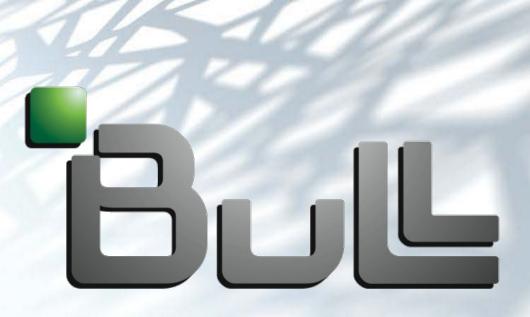
Focus on USER main routines

Min Time [rank]	M-	ax time [rank]	AV	/g time	% region %	6 walltime	Functions
12.462 sec [2.834 sec [0.000 sec [0.000 sec [0.000 sec [0.000 sec [19] 56] 0] 1] 0] 1] 0] 1]	14.108 sec [3.404 sec [0.000 sec [0.000 sec [0.000 sec [0.000 sec [45] 45] 57] 0] 5] 6]	13.248 sec 3.060 sec 0.000 sec 0.000 sec 0.000 sec 0.000 sec	81.23 % 18.77 % 0.00 % 0.00 % 0.00 % 0.00 %		MAIN <u> </u>

Timing report – MPI profiling

Min Time [rank]	Ma	x time [rank]	A	vg time	% region %	6 walltime	Functions
0.002 sec [1.094 sec [0.048 sec [0.000 sec [4.887 sec [7.810 sec [16] 16] 29] 1] 0] 24]	0.004 sec [1.186 sec [1.496 sec [0.019 sec [24.091 sec [26.302 sec [58] 1] 1] 1] 0] 11] 63]	0.003 sec 1.126 sec 0.426 sec 0.008 sec 19.043 sec 13.135 sec	0.01 % 3.34 % 1.26 % 0.02 % 56.44 % 38.93 %	2.22 % 0.84 % 0.02 % 37.57 %	MPI_Barrier MPI_Init MPI_Irecv MPI_Reduce MPI_Send MPI_Wait

Timing report – I/O region


Min Time [rank]	M	ax time [rank]	A\	/g time	% region %	6 walltime Functions
0.001 sec [49]	0.001 sec [27]	0.001 sec	0.00 %	0.00 % close
0.000 sec [33]	0.000 sec [29]	0.000 sec		0.00 % pipe
0.089 sec [33]	0.114 sec [16]	0.105 sec		0.21 % read
0.004 sec [1]	0.732 sec [60]	0.526 sec		1.04 % write

And also...

- GFLOPS
- Floating point operations
- Cache misses L1, L3

bullx Prof

Apply those tools to IFS ! ③

Architect of an Open World™