The Icosahedral Nonhydrostatic (ICON) Model

Scalability on Massively Parallel Computer Architectures

Florian Prill, DWD + the ICON team

15th ECMWF Workshop on HPC in Meteorology
October 2, 2012

ICON = ICOsahedral Nonhydrostatic model

Global circulation model for atmosphere and ocean

- Joint development of DWD and Max-Planck-Institute for Meteorology

$$
\begin{aligned}
& \partial_{t} v_{n}+(\zeta+f) v_{t}+\partial_{n} K+w \partial_{z} v_{n}=-c_{p d} \theta_{v} \partial_{n} \pi \\
& \partial_{t} w+\nabla \cdot\left(\mathbf{v}_{n} w\right)-w \nabla \cdot \mathbf{v}_{n}+w \partial_{z} w=-c_{p d} \theta_{v} \partial_{z} \pi-g \\
& \partial_{t} \rho+\nabla \cdot(\mathbf{v} \rho)=0 \\
& \partial_{t}\left(\rho \theta_{v}\right)+\nabla \cdot\left(\mathbf{v} \rho \theta_{v}\right)=0 \quad\left(v_{n}, w, \rho, \theta_{v}: \text { prognostic variables }\right)
\end{aligned}
$$

Code design goals:

- data parallelism and task parallelism
- multi-vendor interoperability
- operational schedule: fixed run time characteristics

In a Nutshell

ICON implements optimization strategies for

- data placement and locality
- reduction of serial bottlenecks
- system-level optimization

ICON

parallel program design

SPMD style programming with master-only message passing

OpenMP task parallelism asynchronous I/O
advanced data structures for special purposes

ICON's Unstructured Grid

Primal cells: triangles

- uses icosahedron for macro-triangulation
- staggered grid, velocity at edge midpoints
- local subdomains ("nests")

Example:
20 km global res.
$\approx 1.3 \cdot 10^{6} \Delta$
$\times 90$ vertical levels
(up to 75 km)

ICON's Domain Decomposition

Geometric decomposition, 20 partitions

Criteria:

1. Static load balancing, e.g. every PE comprises sunlit and shadowed parts of the globe
2. Communication reduction

Explicit array partitioning with

- halo regions
- lateral boundary regions
- nest overlap regions
- interior points
... avoids conditionals in iterations.

ICON's Domain Decomposition

Min-cut decomposition, 20 partitions
Example, 40 PEs, 40 km global:
Comm. ca. -4%, Connections ca. -7.9\%

Criteria:

1. Static load balancing, e.g. every PE comprises sunlit and shadowed parts of the globe
2. Communication reduction

Explicit array partitioning with

- halo regions
- lateral boundary regions
- nest overlap regions
- interior points
... avoids conditionals in iterations.

Solver Parts

Run-time portions (example)

I/O: Bottleneck for High-Resolution NWP

Classical root I/O of high-resolution data becomes a critical issue.

The ICON model offloads all computed results to dedicated output nodes.

- computation and I/O overlap
- WMO GRIB2 standard
- fast system layer: Climate Data Interface

Advanced Data Structures

Proximity queries in a metric space
"Find thenear neighbors in a large data set,"
set of cell centers
distance on the sphere

Elementary approach: Grid method
Divide search area into small spaces, keep short lists of points.
Alternative approach: Search trees

- Setup phase: OpenMP pipelining during tree construction
- Query phase: Different threads may traverse the tree structure in parallel

Geometric Near-neighbor Access Trees

Generalization of $k d$-trees.

1. At the top node of a GNAT choose several distinguished split points.
2. The remaining points are classified into groups depending on what Voronoi cell they fall into.
3. Recursive application forms tree levels.
Additionally store ranges of distance values from split points to the data points associated with other split points.

嗇 S. Brin: Near Neighbor Search in Large Metric Spaces. VLDB '95

Geometric Near-neighbor Access Trees

Generalization of $k d$-trees.

1. At the top node of a GNAT choose several distinguished split points.
2. The remaining points are classified into groups depending on what Voronoi cell they fall into.
3. Recursive application forms tree levels.
Additionally store ranges of distance values from split points to the data points associated with other split points.

画 S. Brin: Near Neighbor Search in Large Metric Spaces. VLDB '95

Geometric Near-neighbor Access Trees

Generalization of $k d$-trees.

1. At the top node of a GNAT choose several distinguished split points.
2. The remaining points are classified into groups depending on what Voronoi cell they fall into.
3. Recursive application forms tree levels.
Additionally store ranges of distance values from split points to the data points associated with other split points.

嗇 S. Brin: Near Neighbor Search in Large Metric Spaces. VLDB '95

Geometric Near-neighbor Access Trees

Generalization of $k d$-trees.

1. At the top node of a GNAT choose several distinguished split points.
2. The remaining points are classified into groups depending on what Voronoi cell they fall into.
3. Recursive application forms tree levels. Additionally store ranges of distance values from split points to the data points associated with other split points.

嗇 S. Brin: Near Neighbor Search in Large Metric Spaces. VLDB '95

Flat-MPI + Hybrid Performance

Objective

75% of Top500 HPC systems have ≥ 6 cores per socket. On-chip clock rates have increased only moderately.

Amdahl ' 67
Pessimistic saturation limit for program scaling on HPC systems:

$$
\text { Speedup } S \leq \frac{1}{\alpha} \quad(\alpha: \text { non-parallel sections })
$$

For NWP: Run time, not problem size is constant.

- Parallel amount grows with the number of PEs
- Weak scaling matters in practice!

Flat-MPI + Hybrid Performance

Test setup: experiment APE_NH, geom. decomposition, 1 h reduced radiation grid, 48 cells/core

Test setup: real data test case, 2000 steps, geom. decomp., resolution 20 km global, 10 km local
(L. Linardakis, 01/2012)

Strong Scaling Test

Test setup:

Non-hydrostatic test, real data,
10 days forecast
Resolution: R2B06 ($\sim 40 \mathrm{~km}$), 90 levels, time step 60s

Parallel setup:

IBM Power6 platform,
6 h output,
32 MPI tasks $\times 2$ OpenMP threads/node (smt)

Portable Efficiency?

Cache Optimization

Unstructured grids make extensive use of indirectly accessed arrays. Manual loop transformations:

- Loop interchange: Array assignments are transformed to allow vectorization and improved cache performance on scalar platforms.
- Loop tiling:

Block-partitioned loop iteration space, enhancing cache reuse. Block size = "automatic" optimization for a wide range of platforms.

IBM Power 6, 40 global

Task Assignment

Prevent tasks from going off-node, reduce switch communication.

Task placement is a Quadratic Assignment Problem:

$$
\min _{\pi \in \Pi(n)} \sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} \cdot b_{\pi_{i} \pi_{j}}, \quad \begin{array}{ll}
a_{i j}: & b_{i j}: \\
\text { flow matrix, } \\
\text { distance matrix. }
\end{array}
$$

NP-hard problem!
\square B. Brandfass 2010 ; E. Taillard 1991 (robust taboo search)

Task Assignment

Reordered communication matrix, 3×15 tasks

Reordered communication matrix, 8×32

Task assignment benefit

Remote Memory Access

MPI-2 provides a model for remote memory access.

- potentially more lightweight benefit from special hardware?

Local ghost-cell exchange in the ICON model:

System Noise

- OS jitter: daemons, IRQs
- MPI jitter

Analysis with
n-processor micro-benchmark.
Relative OS jitter loss (fix work quantum, m measurements):

$$
\text { lost }_{\text {rel }}=\frac{\sum_{i=1}^{m} \max \left(\bar{t}_{\text {compute }, i,}\right)-m \bar{t}_{\text {compute }}}{m \bar{t}_{\text {compute }}}
$$

- high-frequency perturbations (e. g. cache-related)

In a Nutshell

ICON implements optimization strategies for

- data placement and locality
- reduction of serial bottlenecks
- system-level optimization

ICON
 parallel program design

SPMD style programming with master-only message passing

OpenMP task parallelism asynchronous I/O advanced data structures for special purposes

In a Nutshell

ICON implements optimization strategies for

- data placement and inn-".
- redo
- syst Unsolicited Advice for HPC Vendors:
- OS jitter: System kernel must be minimized to increase performance
- Operational use: Compiler support for reproducible code
- Pragma-based, incremental use of stream architectures

Florian Prill
Met. Analyse und Modellierung
Deutscher Wetterdienst
e-mail: Florian.Prill@dwd.de

