ESRL Global Model Plans

A presentation to: ECMWF 15th Workshop On HPC in Meteorology October 2, 2012

Alexander E. MacDonald Director **Earth System Research Lab** Boulder, Colorado

Deputy Assistant Administrator NOAA Research

NOAA Earth System Research Laboratory Founded 2005 Key Objective: Earth System Models

L. Jarin

Earth System Models: Physical, Chemical, Biological

Summary

- 1. The key science: Nonhydrostatic global atmospheric models with explicit convection, global ocean models, and advanced global assimilation.
- 2. ESRL Models: FIM, NIM and iHYCOM
- 3. The key technology: Massively Parallel Fine Grain Computers.

NOAA Global Model Research and Development Initial Value Time Scales (Resolution 2- 4 km Globally)

_	Short Range	Medium Range	Long Range
Model Run Frequency	1 Hour	6 Hours	24 Hours
Prediction Period	24 Hours	Two Weeks	Three Months
Enabling Science	Heating Balanced Initial Field (Hot Start)	Hybrid EnKF Plus 4DVAR	Explicit Tropical Convection
0 1 Day 10 Days 100 Da			

Key Enabling Technology: GPU Computers

A.E.MacDonald July 25, 2012

NOAA Global Model Research and Development Initial Value Time Scales (Resolution 2- 4 km Globally)

	Short Range	Medium Range	Long Range
Model Run Frequency	1 Hour	6 Hours	24 Hours
Prediction Period	24 Hours	Two Weeks	Three Months
Enabling Science	Heating Balanced Initial Field (Hot Start)	Hybrid EnKF Plus 4DVAR	Explicit Tropical Convection
0 1 Day 10 Days 100 Day			

Key Enabling Technology: GPU Computers

A.E.MacDonald July 25, 2012

NOAA High Resolution Rapid Refresh forecast of mid-Atlantic derecho – 29 June 2012

Composite Reflectivity (dBZ)

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

ESRL/GSD's HRRR model predicted a 65 knot gust in the DC area 12 hours in advance.

NOAA Global Model Research and Development Initial Value Time Scales (Resolution 2- 4 km Globally)

	Short Range	Medium Range	Long Range
Model Run Frequency	1 Hour	6 Hours	24 Hours
Prediction Period	24 Hours	Two Weeks	Three Months
Enabling Science	Heating Balanced Initial Field (Hot Start)	Hybrid EnKF Plus 4DVAR	Explicit Tropical Convection
0	1 0)ay 10 [Days 100 Da

Key Enabling Technology: GPU Computers

A.E.MacDonald July 25, 2012

Ensemble Kalmen Filter, developed by Whitaker and Hamill in ESRL, added 2 points of skill to NWS predictions this spring.

NOAA Global Model Research and Development Initial Value Time Scales (Resolution 2- 4 km Globally)

_	Short Range	Medium Range	Long Range
Model Run Frequency	1 Hour	6 Hours	24 Hours
Prediction Period	24 Hours	Two Weeks	Three Months
Enabling Science	Heating Balanced Initial Field (Hot Start)	Hybrid EnKF Plus 4DVAR	Explicit Tropical Convection
0	11	Day 10 [Days 100 D

Key Enabling Technology: GPU Computers

A.E.MacDonald July 25, 2012

From S. J. Lin, W. Putnam

NOAA Next-Generation Model Development

FIM – Flow-following finite volume Icosahedral Model

- "soccer-ball" grid design for uniform grid spacing
- "Isentropic" adaptive (flowfollowing) vertical coordinate
- New 14-day forecast twice daily
- Real-time experimental at ESRL

iHYCOM – Icosahedral Hybrid Coordinate Ocean Model

- Matched grid design to FIM for coupled ocean-atmosphere prediction system

Dynamical Core

• Finite-volume Integrations on *Local Coordinate*

Lee and MacDonald (*MWR*, 2009): A Finite-Volume Icosahedral Shallow Water Model on Local Coordinate.

2-D f.-v. operator carried out on straight lines, rather than along the 3-D curved lines on the

Novel features of NIIM

- Finite-volume Integrations on *Local Coordinate*
- Efficient Indirect Addressing Scheme on Irregular Grid
- MacDonald, Middlecoff, Henderson, and Lee (2010, IJHPC) : A General Method for Modeling on Irregular Grids.

- Finite-volume Integrations on *Local Coordinate*
- Efficient Indirect Addressing Scheme on Irregular Grid
- FIM: Hybrid σ-θ Coordinate w/ GFS Physics
- Bleck, Benjamin, Lee and MacDonald (2010, MWR): On the Use of an Arbitrary Lagrangian-Eulerian Vertical Coordinate in Global Atmospheric Modeling.

- Finite-volume Integrations on *Local Coordinate*
- Efficient Indirect Addressing Scheme on Irregular Grid
- FIM: Hybrid σ-θ Coordinate w/ GFS Physics
- Conservative and Monotonic Adams-Bashforth 3rd-order FCT Scheme
 - Lee, Bleck, and MacDonald (2010, JCP): A Multistep Flux-Corrected Transport Scheme.

- Finite-volume Integrations on *Local Coordinate*
- Efficient Indirect Addressing Scheme on Irregular Grid
- FIM: Hybrid σ-θ Coordinate w/ GFS Physics
- Conservative and Monotonic Adams-Bashforth 3rd-order FCT Scheme
- Grid Optimization for Efficiency and Accuracy
 - Wang and Lee (2011, SIAM): Geometric Properties of Icosahedral-Hexagonal Grid

on Sphere.

iHYCOM: ESRL's New Ocean Model

- Developers: Rainer Bleck and Shan Sun
- Uses ESRL advanced parallel desgin
- icosahedral horizontal mesh (same as in FIM)
- Arakawa A grid (same as FIM)
- leapfrog time stepping (different from FIM)
- 20 vertical hybrid layers as in HYCOM
 - constant z layers near the surface
 - isopycnic layers in the interior
- full complement of surface forcing
 - wind, heat, freshwater

Sea Surface Temperature from FIMc8

Nonhydrostatic

Icosahedral

Model

- Jin-Luen Lee
- Alexander E. MacDonald
- And others.

Nonhydrostatic GEs in flux form on Z - coord with 3 - Df - v solvers :

$$\begin{cases} \frac{\partial U}{\partial t} + \frac{\partial (uU)}{\partial x} + \frac{\partial (vU)}{\partial y} + \frac{\partial (wU)}{\partial z} + \gamma R \pi \frac{\partial \Theta'}{\partial x} = 0\\ \frac{\partial V}{\partial t} + \frac{\partial (uV)}{\partial x} + \frac{\partial (vV)}{\partial y} + \frac{\partial (wV)}{\partial z} + \gamma R \pi \frac{\partial \Theta'}{\partial y} = 0\\ \frac{\partial W}{\partial t} + \frac{\partial (uW)}{\partial x} + \frac{\partial (vW)}{\partial y} + \frac{\partial (wW)}{\partial z} + \left(\gamma R \pi \frac{\partial \Theta'}{\partial z} - \overline{\rho}g \frac{\pi'}{\pi} + \rho'g\right)\\ \frac{\partial \Theta'}{\partial t} + \frac{\partial (u\Theta)}{\partial x} + \frac{\partial (v\Theta)}{\partial y} + \frac{\partial (w\Theta)}{\partial z} = \frac{\Theta H}{C_p T}\\ \frac{\partial \rho}{\partial t} + \frac{\partial (u\rho)}{\partial x} + \frac{\partial (v\rho)}{\partial y} + \frac{\partial (w\rho)}{\partial z} = 0. \end{cases}$$
$$(U, W, \Theta, \rho) = (\rho u, \rho w, \rho \theta, \rho); \ \Theta(x, z, t) = \overline{\Theta}(z) + \Theta'(x, z, t) \\ \rho(x, z, t) = \overline{\rho}(z) + \rho'(x, z, t); \qquad \nabla p = \gamma R \pi \nabla \Theta \\ p = p_0 \left(\frac{R\Theta}{p_0}\right)^{\gamma}; \ \pi = \left(\frac{p}{p_0}\right)^{\kappa} \end{cases}$$

Nonhydrostatic Icosahedral Model

::: Modeling Goal

* Development of a non-hydrostatic icosahedral global model for **weather** and **climate** predictions

::: <u>Scientific Goals</u>

- * Global cloud resolving model with realistic convection
- * Equatorial waves analysis and super-parameterization
- * Real-time weather prediction at resolutions below 10 km
- ::: Computational Goal
- * CPU/GPU for efficient model integration

- Finite-volume Integrations on *Local Coordinate*
- Efficient Indirect Addressing Scheme on Irregular Grid
- FIM: Hybrid σ-θ Coordinate w/ GFS Physics
- Conservative and Monotonic Adams-Bashforth 3rd-order FCT Scheme
- Grid Optimization for Efficiency and Accuracy
- Novel Features of NIM:

-Three-dimensional finite-volume integration.

NOAA Earth System Research Laboratory - Boulder, Colorado Page 26

3-D control volume

- Finite-volume Integrations on *Local Coordinate*
- Efficient Indirect Addressing Scheme on Irregular Grid
- FIM: Hybrid σ-θ Coordinate w/ GFS Physics
- Conservative and Monotonic Adams-Bashforth 3rd-order FCT Scheme
- Grid Optimization for Efficiency and Accuracy
- Novel Features of NIM:
 - -Three-dimensional finite-volume intervolume
 - -3-D volume Integration to Improve pressure gradient force (PGF)

- Finite-volume Integrations on *Local Coordinate*
- Efficient Indirect Addressing Scheme on Irregular Grid
- FIM: Hybrid σ-θ Coordinate w/ GFS Physics
- Conservative and Monotonic Adams-Bashforth 3rd-order FCT Scheme
- Grid Optimization for Efficiency and Accuracy
- Novel Features of NIM:
 - -Three-dimensional finite-volume integration.
 - -3-D volume Integration to Improve

pressure gradient force (PGF)

- Finite-volume Integrations on *Local Coordinate*
- Efficient Indirect Addressing Scheme on Irregular Grid
- FIM: Hybrid σ-θ Coordinate w/ GFS Physics
- Conservative and Monotonic Adams-Bashforth 3rd-order FCT Scheme
- Grid Optimization for Efficiency and Accuracy
- Novel Features of NIM:
 - -Three-dimensional finite-volume integration.
 - -3-D volume Integration to Improve

pressure gradient force (PGF)

- Runge-Kutta (RK)-4th solvers for vertically propagating acoustic waves, and conservative and positive-definite transport scheme.

Two physics packages

Two physics packages – GRIMs (cafeteria plan)

Radiation	SW : 1-Albedo LW : GFDL	SW : 4-Albedo (GSFC) Chou and Suarez 1999; Chou and Lee 2005; Ham et al. 2009			SW : GSFC. LW: RRTMGWRF	
SFC	M-O sim Hong and P	ilarity an (1996)	+z0t, Vsfc : Seol 96) + OML : Kim an		+ Revised Ch,Cm Kim and Hong (2010)	
LSM	OSU1 Mahrt and Pan (1985)	OSU2 Kang and Hong (2008)	NOAH + Seol (2010) Chen and Dudhia (2001)) 1)	
PBL	MR Hong and P	r F an (1996)	YSU (Noh et al. 2003, Hong et al. 2006, Ho		, Hong 2010)	
GWDO	Alpert et a	t al. (1989) Kim and Ara		ıkawa (1995), Hong et al. (2008)		
GWDC	- Chun and		Baik (1998), Jeon et al. (2010)			
Deep Convection	SAS Hong and Pan (1998) Park and Hong (2007)	RAS Moorthi and Suarez (1992)	SAS + CMT Han and Pan (2006) Byun and Hong (2007)	+ Han and	5AS 1 Pan (2010)	
Shallow convection	Tiedke (1988)		Han and	Pan (2010)		
Micro Physics	WSM1 Hong et al. 1998		WSM2 Zhao and Carr (1995)	WSM3. WSM5, WSM6 Hong et al. (2004)		
Cloudiness	Implicit (Hong et al. 1998)		Explicit (Hong et al. 2010)			
Chemistry	Diagnostic		Progno	stic ozone		

Development History of NIM

Development Plan of NIM

Preliminary Results

Aqua-planet simulations ...

Precipitation

global precipitation (OBS)

NIM precipitation

Peta Flop Computing in 2012

 Large CPU systems (>100 thousand CPUs) are unrealistic for operational weather forecasting

		COST
<u>GPU cost</u>		
Power & Cooling:	\$8.4 M / year	\$0.2M / year
System Cost:	\$100M	\$5 M
Facilities	\$75M	\$0.8M

- GPU-based systems will dominate super-computing within 3 years
 - 75 percent of HPC customers are expected to use GPUs in 2014 (HPC study, 2012)

Questions . . .

alexander.e.macdonald@noaa.gov

