
Performance and Scaling of the
NIM Global NWP Model on GPUs

Tom Henderson
NOAA Global Systems Division

Thomas.B.Henderson@noaa.gov

Mark Govett, Jacques Middlecoff
Paul Madden, James Rosinski,

Craig Tierney

2/22/12

Outline

n A bit about GPUs
n A wee bit about the Non-hydrostatic

Icosahedral Model (NIM)
n  2011: Westmere vs. Fermi
n  2012: Sandybridge vs. Kepler
n NIM scaling
n Commercial GPU compilers
n Future directions

2

2/22/12

Moore’s Law “Free Ride” is Over
n  CPU clock frequencies have stalled
n  CPU vendors moving to more cores per chip to

increase performance
n  Computational Accelerators are back…

n  GPGPU (NVIDIA, AMD)
n  General-Purpose Graphics Processing Unit
n  1000s of simple cores
n  Already on HPC top-500 list
n  Initial NWP work by Michalakes

n  MIC (Intel)
n  Many Integrated Core
n  10s (?) of cores
n  Under development

n  Common theme: exploit fine-grained parallelism

3

2/22/12

GPU Fine-Grained Parallelism

n  Large on-chip (“global”) memory
n  Higher bandwidth than CPUs
n  High latency (100s of cycles)

n  Need lots of threads to hide memory latency
n  Code must vectorize well

n Slow data transfers between CPU & GPU
n  User must efficiently manage transfers

n  Limited per-thread fast (“shared”) memory
& registers
n  User manages memory hierarchy

4

n  Invert traditional “GPU-as-accelerator” model
n  Model state lives on GPU
n  Initial data read by the CPU and passed to the GPU
n  Data passed back to the CPU only for output &

message-passing
n  GPU performs all computations

n  Fine-grained parallelism
n  CPU controls high level program flow

n  Coarse-grained parallelism
n Minimizes overhead of data movement between

CPU & GPU

2/22/12 5

For NWP CPU is a
“Communication Accelerator”

2/22/12 6

Icosahedral (Geodesic) Grid: A
Soccer Ball on Steroids

6

Icosahedral Model Lat/Lon Model

•  Near constant resolution over the globe
•  12 pentagons + lots of hexagons

(slide courtesy Dr. Jin Lee)

2/22/12

NIM NWP Dynamical Core
n  NIM = “Non-Hydrostatic Icosahedral Model”

n  New NWP dynamical core
n  Target: global “cloud-permitting” resolutions ~3km

(42 million columns)
n  Rapidly evolving code base

n  “GPU-friendly” (also good for CPU)
n  Single-precision floating-point computations
n  Computations structured as simple vector ops

with indirect addressing and inner vertical loop
n Coarse-grained parallelism via Scalable

Modeling System (SMS)
n  Directive-based approach to distributed-

memory parallelism built upon MPI

7

2/22/12

NIM Requirements

n Must maintain single source code for all
desired execution modes
n  Single and multiple CPU
n  Single and multiple GPU
n  Prefer a directive-based Fortran approach

for GPU
n  Use F2C-ACC and commercial compilers

n Can tolerate less stable HPC platforms for
research
n  “Opportunity” FLOPS

8

2/22/12

2011 Performance Results

n  225km test case
n  10242 columns, 96 levels, 1000 time steps
n  Expect similar number of columns on each

GPU at ~3km target resolution
n CPU = Intel Westmere (2.8GHz)
n GPU = NVIDIA C2050 “Fermi”	
n Optimize for both CPU and GPU

n  Some code divergence
n  Always use fastest code

9

2/22/12

Good Performance on CPU

n Used PAPI to count flops (Intel compiler)
n  Requires –O1 (no vectorization) to be

accurate!
n  2nd run with –O3 (vectorization) to get

wallclock

~27% of peak on Westmere 2.8 GHz

10

!

2.8*10
12

940
= 2.98Gflops /sec

2011: Fermi GPU vs. Westmere
CPU, 225km 96-level

NIM
routine

CPU 1-
core Time

(sec)

CPU 6-
core Time

(sec)

C2050
GPU Time

(sec)

C2050 GPU
Speedup vs.
6-core CPU

Total 8654 2068 449 4.6
vdmints 4559 1062 196 5.4
vdmintv 2119 446 91 4.9

flux 964 175 26 6.7
vdn 131 86 18 4.8

diag 389 74 42 1.8
force 80 33 7 4.7

2/22/12 11

2/22/12

2012 NIM Changes

n New model code ready ~3 weeks ago
n  Some changes slowed GPU

n Rapid development to port to GPU
n Significant performance tuning on CPU

n  Sped up “vdmint*” by 47% by improving re-
use

n  GPU cannot take full advantage of this due
to per-thread resource limitations

n  Working to resolve this…

12

2/22/12

2012 CPU & GPU Changes

n Bitwise-exact comparison now possible
between GPU & CPU!
n  nvcc compiler flags: “-ftz=true –fmad=false”
n  Avoid library functions including “pow” (**)
n  Greatly speeds up debugging

n  NIM now has a run-time switch to run “**”
operations on CPU for automated testing

n  Do not underestimate the value of bitwise-
exact comparisons!

n  Will it last?
13

2/22/12

2012 CPU & GPU Changes

n Sandybridge memory bandwidth boost
n Access to new Kepler GPU ~1 week ago

n  K10 GPUs via NVIDIA
n  3x more cores per socket (1536)
n  Slower clock frequency
n  2x more FLOPs per Watt

n  Limited performance tuning on K10
n  Valuable assistance from NVIDIA’s Paulius

Micikevicius
§  Only about half of Paulius’ performance

improvements incorporated so far

14

2/22/12

2012: CPUs vs. GPUs vs.
225km, 96-level

n Short 100-time-step runs
n  I/O not included

n Power consumption of one M2090 socket
matches power consumption of two K10
sockets

n  2-socket K10 performance estimated
15

6-core
Westmere

1 socket

16-core
Sandybridge

2 sockets

M2090
Fermi GPU

1 socket

K10 Kepler
GPU

1 socket*

K10 Kepler
GPU 2 sockets

(estimated)

94.7 29.8 20.2 28.8 ~16

2/22/12

2012: CPUs vs. GPUs

n Good fraction of peak performance on
CPU
n  29% of peak FLOPs on single Westmere

core
n  Peak is 11.2 GFLOPs

n Much more difficult to get close to peak
FLOPs on GPU
n  2% of peak FLOPs on one K10 GPU

n  Peak is 2288 GFLOPs

16

2/22/12

NIM Scaling

n F2C-ACC + SMS directives
n  Identical results using different numbers of

GPUs
n  Scaling is worse because compute has

sped up but communication has not
n  Working on communication optimizations

n  Naïve decomposition…
n Demonstrates that single source code can

be used for single/multiple CPU/GPU runs

17

2/22/12

NIM Performance Summary

n  2xK10 is ~6x faster than 6-core Westmere
n  2xK10 is ~2x faster than 16-core Sandybridge

n  ~3x is possible with further tuning on K10
n  ~4x is not likely
n  Power consumption?

n  Debugging and validation are more difficult on
GPUs although this has greatly improved

n  NIM scaling will improve with better grid
decomposition

18

2/22/12

Commercial GPU Compilers

n  Fortran directive-based products from CAPS
(HMPP), PGI (Accelerator), Cray (beta),
[Pathscale]
n  Converging on OpenACC/OpenMP

n  We are using F2C-ACC to demonstrate
features needed by NIM & FIM
n  Vendors are listening and responding
n  Commercial compilers are approaching

performance of F2C-ACC on NIM
n  Next whiny complaint: compilers should hide

data transfer complexity…

19

Host-Device Data Transfers

n  “Accelerator” model is well-supported

Z = g(X,Y,C)

A,B,C = h(X,Z)

X,Y = f(A,B,C)
A,B,C

X,Y
X,Y,C

Z
X,Z

A,B,C
CPU GPU/MIC PCIe

Host-Device Data Transfers

n  “State on Accelerator” is a bit harder

Z = g(X,Y,C)

A,B,C = h(X,Z)

X,Y = f(A,B,C)
A,B,C

X,Y,C

X,Z

A,B,C
CPU GPU/MIC PCIe

Host-Device Data Transfers

n Per-kernel validation is painful!

Z = g(X,Y,C)

A,B,C = h(X,Z)

X,Y = f(A,B,C)
A,B,C

X,Y

Z

A,B,C
CPU GPU/MIC PCIe

2/22/12

Near-Future Directions

n Continue to improve GPU performance
n  Improve multi-GPU scaling
n Continue to work with compiler vendors
n K20, ORNL “Titan”

23

9/12/12

Thanks to…

n Francois Bodin, Guillaume Poirier, and
others at CAPS for assistance with HMPP

n Pete Johnsen at Cray for assistance with
Cray OpenACC GPU compiler

n Dave Norton at PGI for assistance with
PGI Accelerator

n Paulius Micikevicius at NVIDIA
n We want to see multiple successful

commercial directive-based Fortran
compilers for GPU/MIC

24

2/22/12 25

Thank You

25

