Scalability of Elliptic Solvers in Numerical

Weather and Climate- Prediction

Eike Hermann Müller, Robert Scheichl

Department of Mathematical Sciences, University of Bath

ECMWF Workshop on the Use of HPC in Meteorology

Reading Oct 1st, 2012

NGWCP project

Next Generation Weather and Climate Prediction project

- Selection of numerical algorithms to simulate the atmosphere in weather and climate prediction which take advantage of massively parallel architectures.
- Develop new dynamical core for the Met Office Unified Model which scales up to $10^5 - 10^6$ cores
- Substantial increase in global model resolution

 $\sim 25 \text{km} \rightarrow \sim \text{few km}$

 $\Rightarrow \ge 10^{10}$ degrees of freedom per atmospheric variable

Model runtime < 1hour for 5 day forecast

Solve elliptic PDE for pressure correction in << 1second 0

Background

- Elliptic PDE in implicit time stepping
- Model equation
- Multigrid solvers
- Scaling results
 - Massively parallel scaling on Hector
- Tensor product geometric multigrid 3
 - Parallel scaling results
 - Weak scaling
 - Strong scaling
 - Implementation in DUNE-Grid

Implicit timestepping

Large scale atmospheric flow: **Navier Stokes equations**

$$\frac{D\boldsymbol{u}}{Dt} = -2\boldsymbol{\Omega} \times \boldsymbol{u} - \frac{1}{\rho} \nabla \boldsymbol{p} + \boldsymbol{g} + \boldsymbol{S}^{\boldsymbol{u}}$$

$$\frac{D\rho}{Dt} = -\rho \nabla \cdot \boldsymbol{u},$$

image source: NASA

Implicit time stepping

- Unconditionally stable \Rightarrow Larger integration time step Δt
- Solve 3d elliptic PDE for pressure correction π' at every time step [Davies et al. Q J Royal Met Soc, 131 (608):1759-1782, 2005, ...]

 $-(\alpha \Delta t)^2 c_s^2 \nabla \cdot (a \nabla \pi') + b \pi' = RHS$

Significant proportion of model runtime

. . .

Need numerically efficient & scalable solver

Does the solver scale?

Started by testing the following "black box" solvers:

Distributed and Unified Numerics Environment (DUNE)

ISTL Bastian et al. 2008, Blatt and Bastian 2007 & 2008

CG preconditioned with aggregation AMG + ILU0 smoother

Hypre Developed at LLNL by U. Maier-Yang, R. Falgout and others

CG preconditioned with BoomerAMG

Matrix (+ AMG) setup costs?

\Rightarrow "Matrix-free" geometric multigrid

- Hand-written Fortran code based on tensor-product multigrid idea Börm, Hiptmair 2001. Numerical Algorithms. 26: 219234
- DUNE-based code with indirect horizontal-, direct vertical-addressing

Does the solver scale?

Comparison of Multigrid solvers for model equation

Weak scaling of # iter, total time +AMG setup time

all times in seconds

# proc	# dof	AMG (DUNE)		BoomerAMG		geo MG	
16	$8.3\cdot10^{6}$	11	6.92+4.13	12	8.72+2.59	6	1.99
64	$3.4\cdot10^7$	11	7.01+4.92	13	9.52+2.74	6	2.02
256	1.3 · 10 ⁸	11	7.18+4.88	12	8.98+2.82	6	2.04
1024	5.4 · 10 ⁸	11	7.32+5.89	12	9.04+3.18	6	2.06
4096	2.1 · 10 ⁹	13	8.64+6.32	12	8.99+3.56	6	2.06
16384	8.6 · 10 ⁹	12	8.16+8.06	11	9.43+5.75	6	2.10
65536	$3.4\cdot10^{10}$	11	7.49+10.92	9	20.20+7.09	6	2.24

+ matrix setup time for AMG solvers

Model equation

Simplified model equation for $u \equiv \pi'$ on spherical shell

$$-\omega^{2} \left[\Delta_{(2d)} + \lambda^{2} \frac{1}{r^{2}} \frac{\partial}{\partial r} \left(r^{2} \frac{\partial}{\partial r} \right) \right] u + u = RHS$$

Dimensional analysis: $r \in [1, 1 + h]$ with $h = H/R_{earth} = 10^{-2}$:

$$\omega^{2} \sim \left(\frac{c_{s}\alpha\Delta t}{R_{\text{earth}}}\right)^{2} \qquad \qquad \lambda^{2} \sim \frac{1}{1 + (\alpha\Delta t)^{2} (N^{*0})^{2}}$$

- Acoustic waves: $c_s \approx 550 m s^{-1}$
- Buoyancy frequency $N^{*0} = 0.018 s^{-1}$
- Off-centering parameter α = ¹/₂ (fully implicit: α = 1, fully explicit: α = 0)

Model equation

Properties

- $h = H/R_{\text{earth}} \approx 1/100 \Rightarrow \lambda^2/h^2 \gg 1$
- Strong vertical anisotropy $\left(\lambda/h \cdot \frac{\Delta x}{\Delta z}\right)^2$
- Constant term improves condition number (on coarser MG levels)

$$-\omega^2 D^{(2)}u + u = RHS$$

Horizontal grid e.g. cubed sphere, icosahedral,...
 no pole singularity as in lat/lon grid

Multigrid solvers

Multigrid idea: Eliminate error on all scales

- Hierachy of grids *h*, 2*h*, 4*h*, . . .
- Apply smoother (e.g. SOR) on all levels, restrict/prolongate between levels
- Residual equation on coarser grids

 $A^{(H)}e^{(H)} = r^{(H)}$

- \Rightarrow Work on coarse grids is cheap!
- Algorithmically optimal

$$Cost(MG) = O(n)$$

Robust & parallelisable

Setup

Weak scaling

- 1/6 of cubed sphere grid (have also run on entire sphere)
- Horizontal partitioning only* (atmos. physics)
- # processors \propto problem size

$$n_x \mapsto 2n_x, \quad n_y \mapsto 2n_y, \quad n_z = 128, \quad p \mapsto 4p$$

• Keep Courant number $\nu = c_a \Delta t / \Delta x \sim 10$ fixed[†]

(i.e.
$$\Delta t$$
 decreases)
 $\omega \propto \Delta t \propto \Delta x$, $\lambda^2 = \frac{1}{1 + (\alpha \Delta t)^2 (N^{*0})^2}$

Weak Scaling

"Black box" AMG solvers: # iterations & time per iteration

Residual reduction: $||r||/||r_0|| \le 10^{-5}$

AMG (DUNE)[†] BoomerAMG[†] # iter eff. # iter # proc # dof eff. t_{iter} t_{iter} $8.3 \cdot 10^{6}$ 16 0.63 12 0.73 11 $3.4 \cdot 10^{7}$ 64 11 0.64 [98%] 13 0.73 [100%] $1.3 \cdot 10^{8}$ 256 11 0.65 [97%] 12 0.75 [97%] $5.4 \cdot 10^{8}$ 1024 11 0.67 [94%] 12 0.75 [97%] $2.1 \cdot 10^{9}$ 4096 13 0.66 [95%] 12 0.75 [97%] 16384 $8.6 \cdot 10^9$ 12 0.68 [92%] 11 0.86 [84%] $3.4 \cdot 10^{10}$ 65536 11 0.68 [92%] 9 2.24 [32%]

† as preconditioner for CG

all times in seconds

Setup costs + Anisotropy

AMG has coarse level & matrix setup costs

Rotating anisotropy due to vertical grading

- Grid-aligned anisotropy
- Operator "well-behaved" in horizontal direction

⇒ Tensor-product matrix-free geometric multigrid

Börm, Hiptmair 2001. Numerical Algorithms. 26: 219234

Tensor-product multigrid

Tensor product operator

$$A = A^{(r)} \otimes M_{h}^{(horiz)} + M^{(r)} \otimes A_{h}^{(horiz)}$$
 [for operator $-\nabla (\alpha \nabla \cdot)$]
Vertical "eigenmodes"

$$A^{(r)}e_{j}^{(r)} = \omega_{t}M^{(r)}e_{j}^{(r)}$$
 $u(r, \mathbf{x}) = \sum_{j=1}^{n_{z}} u_{j}(\mathbf{x})e_{j}^{(r)}(r)$

Börm, Hiptmair 2001. Numerical Algorithms. 26: 219234

- Vertical line relaxation (e.g. RB Gauss-Seidel)
- Semi-coarsening in horizontal direction only
- \Rightarrow 2d multigrid convergence rate

$$\rho^{(2d)} \leftarrow \max_{i} \left\{ \rho^{(horiz)}[e_{j}^{(r)}] \right\}$$

Meteorological application on 3d lat-lon grid:

Buckeridge, Cullen, Scheichl and Wlasak 2011. Q J Royal Met Soc 137 (657):1083-1094.

Geometric multigrid

Implementation

- RB Line Gauss-Seidel (1× pre-/post-smoothing)
- Halo exchange after each smoothing step & prolongation
 ⇒ Overlap calculation/communication
- collect/distribute coarse grid data when # procs > # columns

Geometric multigrid

Parallel Multigrid: volume/interface ratio decreases on coarser levels Hülsemann et al., Lect. Notes in Comp. Science and Engineering (2005)

BUT

Well conditioned on coarser levels $(-\omega^2 D^{(2)}u + u = RHS)$ Horizontal coupling vs. constant term:

$$4\frac{\omega^2}{\Delta x_{\ell}^2} = 4\frac{\omega^2}{\Delta x_0^2} \times 2^{-2\ell} \lesssim 2^{8-2\ell}$$

 \Rightarrow Reduce number of levels

- Coarsen to 1 column (standard MG)
- Coarsen to 1 column/processor (7 levels, shallow MG)
- 4 levels (very shallow MG)
- 1-level method to check robustness

Weak scaling results

Different number of multigrid levels

all times in seconds

		standard MG		$n_{lev} = 7$		$n_{lev} = 4$	
# proc	# dof	#	t _{iter}	#	t _{iter}	#	t _{iter}
16	$8.3 \cdot 10^6$	6	0.332	6	0.332	6	0.333
64	$3.4\cdot10^7$	6	0.337 [99%]	6	0.335 [99%]	6	0.335 [99%]
256	1.3 · 10 ⁸	6	0.340 [98%]	6	0.338 [98%]	6	0.337 [99%]
1024	$5.4\cdot 10^8$	6	0.343 [97%]	6	0.342 [97%]	5	0.340 [98%]
4096	2.1 · 10 ⁹	6	0.343 [98%]	6	0.340 [98%]	5	0.342 [97%]
16384	8.6 · 10 ⁹	6	0.350 [95%]	6	0.342 [97%]	5	0.342 [97%]
65536	$3.4\cdot10^{10}$	6	0.373 [89%]	6	0.351 [95%]	5	0.342 [97%]

Eike Mueller Scalability of Elliptic Solvers in NWP

Strong scaling results

Multigrid on arbitrary spherical grids

Grid structure

Tensor product grid structure

2-sphere	\otimes	<u>1-column</u>			
host grid	directly addressed				

Size of vertical column O(100)

- "Hide" indirect addressing in horizontal direction by work in vertical direction MacDonald et al., Int J of HPC Appl (2011)
- Naturally maps to DUNE data model: Attach vector of size n_z to each cell of the 2d host grid
- Multigrid hierarchy only on host grid

Comparison to DUNE geometric MG code

Time per iteration [Intel(R) Core(TM)2 Duo CPU E8400 3.00GHz]

Implemented together with Andreas Dedner (Warwick)

Summary and outlook

Summary

- Multigrid solvers for elliptic PDE in NWP implicit time stepping
- Verified weak & strong scaling to 65536 cores (HECTOR) Access to bigger machines?
- Geometric multigrid code avoids AMG- and matrix setup costs
- Anisotropy: Tensor product multigrid semi-coarsening + vertical line relaxation

• Problem well-conditioned on coarser grids

- \Rightarrow use small number of multigrid levels
- Geometric multigrid robust

Outlook

- Hybrid MPI+OpenMP parallelisation
- More realistic problems (ENDGame?): non-symmetry, non-smoothness,...
- GPGPUs