The CMC 15km Global Deterministic Prediction System with the Yin-Yang grid.

Abdessamad Qaddouri and Vivian Lee

Environment Canada

Environnement Canada Centre météorologique canadien

Environment Canada Canadian Meteorological Centre

Canada

The 15th ECMWF Workshop on High Performance Computing in Meteorology

European Centre for Medium-Range Weather Forecasts October 1-5, 2012, Reading, UK

Outline

- Introduction and motivation
- Model problem and method
- Validation and Performance
- Ensemble-Variational assimilation
- Future Work

Global Yin-Yang

Motivation

(Kageyama and Sato, Geochem. Geophys. Geosystems 2004)

- Pole free composite grid
- Each piece is LatLon
- Numerical schemes on Lat/Lon adapted to Yin-Yang Schwarz method easily implemented (2 way-coupling of 2 LAM models)
- Algorithms for pole free grid is much easier to parallelize

Model problem

(Girard et al. 2010 CMC report)

 The hydrostatic primitives equations are in a log hydrostatic pressure terrainfollowing coordinate (lid 0.1mb)

Below 200 hPa.Left : variable $r(r_{max} = 100, r_{min} = 2)$; Right : constant r = 4.5

Spatial discretization

(Girard et al. 2010 CMC report)

- Horizontal finite centred differences on Arakawa C grid
- Vertical finite differences on Charney-Phillips grid

Temporal discretization

(Côté and Staniforth 1988 Mon. Wea. Rev.; Yeh at al. 2002 Mon. Wea. Rev.)

 The 2 time level semi-Lagrangian method with an implicit time discretization.

Boundary conditions

- Vertical: $\dot{\zeta} = 0$ at $\zeta = \zeta_{surf}, \zeta_{top}$.
- Horizontal : Dirichlet type

3D Elliptic Boundary value problem on Yin-Yang grid

(Qaddouri et al. 2008 Appl. Numer. Math.; Qaddouri and Lee 2011 QJMRS)

- The linear set of equations is reduced to the elliptic boundary value problem
- The Yin-Yang domain consists of 2 overlapping sub-domains

Solution with iterative Schwarz Method

- To solve the global elliptic problem, we solve the sub-problems individually on each Yin and Yang domain and when needed, update the values at the interfaces
- This method is called the Schwarz Domain Decomposition Method
- The exchange of values at the interfaces is done by using Cubic Lagrange Interpolation

Parallel implementation

Two-way coupling between 2 LAMs

Data Exchange between Yin and Yang subgrids

Communication Pattern

Physical parametrizations in the GDPS

Physical Process	Description	Reference	
Boundary layer turbulence	Turbulent kinetic energy (TKE) 1.5-order closure scheme	Belair et al. 1999, Bougeault and Lacarrere 1989	
Orographic blocking	Low-level drag based on effective height, slope and eccentricity of subgrid-scale mountains	Zadra et al. 2003, Lott and Miller 1997	
Orographic gravity wave drag	Upper-level drag due to breaking of moun- tain waves, based on the local Froude number	McFarlane 1987	
Radiative transfer	Correlated k-distribution for gaseous transmission	Li and Barker 2005	
Non-orographic gravity wave drag	Doppler-spread scheme with prescribed source spectrum	Hines 1997a,b	
Methane oxidation	Simple estimate of stratospheric humidifi- cation due to methane oxidation	Charron et al. 2012	
Grid-scale microphysics	Single prognostic variable for cloud wa- ter/ice	Sundqvist 1978, Pudykiewicz et al. 1992	
Deep convection	Based on convective inhibition and re- lease of convective available potential en- ergy (CAPE)	Kain and Fritsch 1990, 1993	
Shallow convection	Kuo-type closure (Kuo transient)	Belair et al. 2005	
Land-surface interactions	Interactions between Surface, Biosphere and Atmosphere (ISBA) scheme, multi- layer with 10 prognostic variables	Noilhan and Planton 1989, Be- lair et al. 2003a,b	

Courtesy of Ayrton Zadra

Digital Filter and High-order diffusion

- Diabatic digital filter¹ with a 6 hour span.
- Scale selective implicit² or explicit ³ ∇^6 applied to variables(u,v,w, $\dot{\zeta}$)
 - 1. Fillion, L., H. L. Mitchel, H. R. Ritchie and A. N. Staniforth, 1995 : The impact of a digital filter finalization technique in a global data assimilation system, *Tellus*, **47A**, 304-323.
 - Qaddouri A.,and V.Lee 2008 : Solution of the implicit formulation of high order diffusion for the Canadian Atmospheric GEM model. Proc. 2008 Spring Simulation Multiconf., High Performance Computing Symp., J.A. Hamilton, Jr. et al. (eds), Soc. For Modeling and Simulation Internat., Ottawa, Canada, 2008, pp 362-367
 - 3. Shuman, M.W.R. #57, p.357-361, eq #5. : 9-point filter

Geophysical fields

- are independently calculated on the Yin and Yang grids.

15 km Yin-Yang configuration: 2047 x 683 (x2)

Topography field (Courtesy of Michel Desgagné)

15 km Yin-Yang configuration 2047 x 683 (x2)

Courtesy of Michel Desgagné

Validation and Performance

- Objective evaluation of 5 days forecasts against observations.
- Verification is done for a set of 42 winter and 42 summer integrations initialized with analysis of 2008.
- Two configurations with the same model :

Global LatLon (1728 \times 1335 \times 80) (\sim 15km at 49^o north)

Global Yin-Yang $2 \times (2047 \times 683 \times 80)$ (~ 15km at equator)

North America objective evaluation for 44 summer cases (120hr forecasts).

North America objective evaluation for 44 winter cases (120hr forecasts).

24 hour accumulated precipitation forecast

YIN and YANG precipitation field superimposed on the *precipitation* from the Global LATLON Grid

Hurricane Fay, Aug.19, 12Z, 2008: 24 hour accumulated precipitation forecast

Precipitation field from the GEM **Yin-Yang**

Precipitation field from the GEM **LATLON**

Timings(seconds) on IBM-P7 for 505(480+25) time steps (approx 26% of operational run) (10 day forecast = 1945(1920+25) time steps)¹

		GEM Yin-Yang	
	(1/28x1335x80L)	2 x (204/x683x80L)	
	184550400 pts	223696160 pts	
PE topology NpxXNpyXOpenMP	(4x44x16)(44 nodes)	2x(20x30x2) (38 nodes)	
Total time	1332	1398	
DYNSTEP	623	768	
ADW	434	287	
SOL	111	233	
BAC	13	85	
PHYSTEP	355	451	
HORDIFF ∇^6	131 (implicit)	27 (explicit)	
VSPNG ∇^2	38 (implicit)	8 (explicit)	
OUTDYN	123	85	
OUTPHY	15	5	
NESTBCS	N/A	50	

1 - model timestep = 450sec

Number of Nodes	38	75	72
PE topology NpxXNpyXOpenMP	2 x (20x30x2)	2 x (20x30x4)	2 x (38x30x2)
TOTAL	1398	1082	1849
DYNSTEP	768	600	1353
ADW	287	205	188
SOL	233 (FFT)	199 (FFT)	1018 (Iterative) ¹
BAC	85	68	59
PHYSTEP	451	254	68
HORDIFF ∇^6	27	26	28
VSPNG ∇^2	8	6	6
OUTDYN	85	106	111
OUTPHY	5	17	17
NESTBCS	50	50	35

GEM Yin-Yang Timings(seconds) on IBM-P7 for 505(480+25) time steps

1 : FGMRES with Block-Jacobi preconditioner

Ensemble-Variational assimilation : En-Var

Buehner et al. 2010 Mon. Wea. Rev.

- Introduction
 - En-Var approach is being tested to replace 4D-Var
 - It is a hybrid approach using variational assimilation with EnKF 4D ensemble covariances
 - By making use of the 4D ensembles, En-Var performs a 4D analysis without 4D-Var
 - It is more computationally efficient (10% 20% of the computational resources), easier to maintain/adapt than 4D-Var

- Summary of Preliminary Results :
 - Produces similar quality forecasts as 4D-Var below 20hPa in the extra-tropics and, significant improvements in the tropics
 - for above 20hPa, scores are similar to 3D-Var but worse than 4D-Var (can probably improve this by raising the EnKF model top from 2hPa to 0.1hPa)

inc: Analysis Increment

Courtesy of Mark Buehner

Future Work

- Global 15km Yin-Yang produces 450G of output for an operational 10 day forecast
- Native output is on 2 grids, 2 files
- Optimize model to run in one hour

Thank you

Acknowledgements to : Mark Buehner, Michel Desgagné, Claude Girard, Michel Roch, Ayrton Zadra

Supplementary Slides

Model problem

(Girard et al. 2010 CMC report)

- The hydrostatic primitives equations (HPEs) in log-p coordinate

$$\frac{d\mathbf{V}_{h}}{dt} + f\mathbf{k} \times \mathbf{V}_{h} + RT\nabla_{\zeta}Bs + \nabla_{\zeta}\phi' = \mathbf{F}^{\mathbf{H}},\tag{1}$$

$$\frac{d}{dt} \ln\left(\frac{T}{T^*}\right) - \kappa \left[\frac{d}{dt}(Bs) + \dot{\zeta}\right] = F^T,$$
(2)

$$\frac{d}{dt} \left[Bs + \ln\left(1 + \frac{\partial B}{\partial \zeta}s\right) \right] + \nabla_{\zeta} \cdot \mathbf{V}_{h} + \frac{\partial \dot{\zeta}}{\partial \zeta} + \dot{\zeta} = 0, \quad (3)$$
$$\frac{T}{T^{*}} - \frac{\partial\left(\zeta - \phi'/RT^{*}\right)}{\partial\left(\zeta + Bs\right)} = 0, \quad (4)$$

- Some Operators and Fields

$$\begin{split} \frac{d}{dt} &= \frac{\partial}{\partial t} + \frac{1}{\cos^2 \theta} \left(U \frac{\partial}{\partial \lambda} + V \cos \theta \frac{\partial}{\partial \theta} \right) + \dot{\zeta} \frac{\partial}{\partial \zeta}, \\ \nabla_{\zeta} \cdot \mathbf{V}_h &= \frac{1}{\cos^2 \theta} \left(\frac{\partial U}{\partial \lambda} + \cos \theta \frac{\partial V}{\partial \theta} \right), \\ U &= \frac{u \cos \theta}{a}, V = \frac{v \cos \theta}{a}, \\ \nabla_{\zeta} &= \frac{a}{\cos \theta} \left(\frac{1}{a^2} \frac{\partial}{\partial \lambda}, \frac{\cos \theta}{a^2} \frac{\partial}{\partial \theta} \right), \end{split}$$

Vertical coordinate
$$\zeta = \ln p - Bs$$
; $B = \Lambda^r$; $s = \ln(p_{surf}/10^5)$
 $\Lambda = \left((\zeta - \zeta_{top}) / (\zeta_{surf} - \zeta_{top}) \right); 0 \le r = r_{max} - (r_{max} - r_{min}) \Lambda \le 30$

- log hydrostatic pressure hybrid terrain-following vert. coord. (lid 0.1mb)

Below 200 hPa.Left : variable $r(r_{max} = 100, r_{min} = 2)$; Right : constant r = 4.5

Solution with iterative Schwarz Method

- Domain = 2 overlapping sub-domains (YIN/YANG)
- Solve HPEs equations iteratively on Sub-domains exchange variables at interfaces : Cubic Lagrange interpolation
- On each sub-domain : same local solver with the same time step
 - 1. The 2 time level semi-Lagrangian method with an implicit time discretization.
 - 2. Finite differences on horizontal Arakawa-C grid and on vertical Charney-Phillips grid

Spatial discretization

(Girard et al. 2010 CMC report)

- Vertical finite differences on Charney-Phillips grid

$$\frac{d\mathbf{V}_{h}}{dt} + f\mathbf{k} \times \mathbf{V}_{h} + R\overline{T}^{\zeta}\nabla_{\zeta}Bs + \nabla_{\zeta}\phi' = 0, \qquad (5)$$

$$\frac{d}{dt}\ln\left(\frac{T}{T^*}\right) - \kappa\left[\frac{d}{dt}\left(\overline{B}^{\zeta}s\right) + \dot{\zeta}\right] = 0, \tag{6}$$

$$\frac{d}{dt} \left[Bs + \ln\left(1 + \delta_{\zeta} \overline{B}^{\zeta} s\right) \right] + \nabla_{\zeta} \cdot \mathbf{V}_{h} + \delta_{\zeta} \dot{\zeta} + \overline{\dot{\zeta}}^{\zeta} = 0, \tag{7}$$

$$\frac{T}{T^*} + \left[\frac{\delta_{\zeta}\left(\zeta - \phi'/RT^*\right)}{\delta_{\zeta}\left(\zeta + Bs\right)}\right] = 0, \qquad (8)$$

- Finite differences on Arakawa C grid

Temporal discretization

(Côté and Staniforth 1988 Mon. Wea. Rev.; Yeh at al. 2002 Mon. Wea. Rev.)

- On each subdomain for each prognostic variable F

$$\frac{dF}{dt} + G = 0 \tag{9}$$

- Time discretization and weighted G terms along trajectory

$$\frac{F-F^{-}}{\Delta t} + \left[\left(\frac{1}{2} + \epsilon\right)G + \left(\frac{1}{2} - \epsilon\right)G^{-} \right] = 0.$$
 (10)

- Approximate solution for a trajectory calculation

$$\frac{d\mathbf{r}}{dt} = \mathbf{V}_{\mathbf{h}}(\mathbf{r}, \zeta, \mathbf{t}) \qquad \frac{d^{2}\mathbf{r}}{dt^{2}} = -\mathbf{r}\frac{\mathbf{V}_{\mathbf{h}}^{2}}{\mathbf{a}^{2}}$$
$$\frac{d\zeta}{dt} = \dot{\zeta}(\mathbf{r}, \zeta, \mathbf{t}) \qquad \frac{d^{2}\zeta}{dt^{2}} = 0, \qquad (11)$$

Boundary conditions

- vertical :

$$\dot{\zeta} = 0 \quad at \quad \zeta = \zeta_{surf}, \zeta_{top}.$$
 (12)

- Horizontal : Dirichlet type

3D Elliptic boundary value problem on Yin-Yang grid

(Qaddouri et al. 2008 Appl. Numer. Math. ; Qaddouri and Lee 2011 QJMRS) – Linear set of equations is reduced to EBVP

$$\Delta_{\zeta} P + \frac{\gamma}{\kappa \tau^2 R T^*} (\delta_{\zeta}^2 + \overline{\delta_{\zeta}}^{\zeta}) P = A P = R_E, \tag{13}$$

where $P = \phi' + RT^*Bs$

- with the following top and bottom boundary conditions :

$$\delta_{\zeta} P_{top} = C_{top}, \ (\delta_{\zeta} P_{bot} + \kappa \overline{P}_{bot}^{\zeta}) = C_{bot}.$$

– R_E is the right-hand side , C_{top} and C_{bot} are constants and

$$a^{2} \triangle_{\zeta} = \frac{1}{\cos^{2}\theta} \frac{\partial^{2}}{\partial\lambda^{2}} + \frac{1}{\partial\sin\theta} \cos^{2}\theta \frac{\partial}{\partial\sin\theta}.$$
 (14)

- Iterative solution

$$\begin{array}{rcl} AP^{(1),k} &=& R_E^{(1)} \ \mbox{on } \Omega_1, & AP^{(2),k} &=& R_E^{(2)} \ \mbox{on } \Omega_2, \\ B_1^{(1)}P^{(1),k} &=& B_1^{(1)}P^{(2),k-1}, & \mbox{on } \delta\Omega_1, & B_1^{(2)}P^{(2),k} &=& B_1^{(2)}P^{(1),k-1}, & \mbox{on } \delta\Omega_2 \end{array}$$

- Europe objective evaluation for 44 summer cases (120hr forecasts).

- Europe objective evaluation for 44 winter cases (120hr forecasts).

- World objective evaluation for 44 summer cases (120hr forecasts).

- World objective evaluation for 44 winter cases (120 hr forecasts).

24 hour precipitation forecast without geographical outline

Yin and **Yang** precipitation field superimposed on the Global **Yin-Yang** Grid

Yin and Yang precipitation field superimposed on the *precipitation* from the Global LATLON Grid