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Abstract 

The European Centre for Medium-Range Weather Forecasts (ECMWF) 4D-Var data assimilation system has 
been modified to allow the direct assimilation of Principal Component (PC) scores derived from spectra 
measured by the Infrared Atmospheric Sounding Interferometer (IASI). Testing of a prototype system where 165 
IASI radiances are replaced by just 20 PC scores shows significant computational savings with no detectable loss 
of skill in the resulting analyses or forecasts. Indeed in some respects the assimilation of PC scores leads to 
marginal improvements over the traditional radiance based assimilation.   

KEYWORDS: IASI; Data Assimilation; Satellite Data; Principal Component Analysis 

 

1 Introduction 

The assimilation of high resolution radiances measured by the Infrared Atmospheric Sounding 
Interferometer (IASI) (Chalon et al., 2001) on the MetOp-A platform has produced a significant 
positive impact on forecast quality (Collard and McNally, 2008). The operational use of IASI 
radiances at the European Centre for Medium-Range Weather Forecasts (ECMWF) and other NWP 
centres is currently restricted to a selection of temperature sounding channels in the long-wave region 
of the spectrum and to a small number of humidity sounding channels. In principle, to exploit the full 
information content of IASI, the number of channels used in the assimilation could be increased to 
cover the full spectrum. NWP users are limited to assimilating less than the full IASI spectrum by the 
prohibitive computational cost, but it is also known that the independent information on the 
atmosphere contained in an IASI spectrum is significantly less than the total number of channels 
(Huang et al., 1992). There is thus a need to find a more efficient way of communicating the measured 
information to the analysis system than simply increasing the number of channels. Similarly, satellite 
agencies are seeking a more efficient means of near-real time data dissemination for instruments such 
as IASI – as the traditional practice of transmitting full spectral data at full spatial resolution is likely 
to become prohibitively expensive in the future (as instruments are flown on multiple polar and 
geostationary platforms).  

Principal Component Analysis (PCA) is a classical statistical method for the efficient encapsulation of 
information from voluminous data (Joliffe, 2002). As such, it has been proposed as a solution to the 
above problems although - while noting that the two issues are quite similar- the requirements are 
quite separate. There are strong indications that data providers will evolve to the dissemination of 
Principal Component (PC) scores to improve efficiency. It is thus timely and opportune to investigate 
the feasibility of directly assimilating PC scores into NWP models.  Of course alternative 
methodologies are available for the efficient encapsulation and assimilation of high-resolution infrared 
sounder spectra. These include the use of radiances reconstructed from PC scores (Collard et al., 2009) 
and the use of data in the form of partial eigen-decomposition and null-space filtered retrievals (Joiner 
and Da Silva, 1998). We should stress that in this paper no attempt is made to compare the relative 
merits of these, which at a theoretical level can arguably be considered equivalent (see e.g. Masiello et 
al., 2011). Our main objective is to document the development and the functionality of a prototype 
global 4D-Var assimilation system based on the direct use of PC data.  
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The outline of the paper is as follows. In Sections 2 and 3 we review the theory of PCA and discuss 
the features of PC data derived from radiance spectra. In Section 4 we present the assimilation 
methodology. Section 5 discusses results from the direct assimilation of PC scores using the ECMWF 
Integrated Forecasting System (IFS). Finally, in Section 6 we present a summary of the results and 
discuss possible future directions. 

2 A review of the theory of Principal Component Analysis 

PCA is a method that allows the reduction of the dimensionality of a problem by exploiting the linear 
relationship between all the variables contained in a multivariate dataset. The reduction of the 
dimension of the dataset is obtained by replacing the original set of correlated variables with a smaller 
number of uncorrelated variables called principal components. Because the new derived variables 
retain most of the information contained in the original data set, PCA theory provides a tunable 
mechanism to efficiently represent the information in the dataset. 

Our dataset consists of a sample of l spectra of n radiances arranged into an l by n data matrix R. The 
dataset can then be represented by the vector population T

nrrr ),.....,( 21=r (here T denotes the 

transpose). If C is the n by n covariance matrix of the data matrix R, and A is the n by n matrix formed 
by the eigenvectors of the covariance matrix arranged as row vectors in descending order according to 
the magnitude of their eigenvalues, the PCs, p, of the vector population can be written as:  

 p Ar=  (1) 

The eigenvectors represent the directions of maximum variance in the data; consequently, each PC 
gives the linear combination of the variables that provides the maximum variation. The PCs are 
orthogonal, hence uncorrelated (although this does not imply that they are statistically independent), 
and the values associated to each spectrum are known as PC scores. If iλ  is the eigenvalue associated 

with the ith eigenvector, then the value of 2

1
/

n

i i
i

λ λ
=
∑   gives the proportion of variation explained by the 

ith PC. Because the matrix A is orthogonal, its inverse is equal to its transpose and we can write: 

 r A pT=  (2) 

Equations (1) and (2) can be written in discrete notation form as:  
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where i=1,n represents the ith value and j=1,l  is the jth spectrum. A number of PCs, m, fewer than n can 
often represent most of the variation in the data. We can then reduce the dimension of the problem by 
replacing the n original variables with the first m PCs. In many applications, the choice of the number 
of dimensions is based on the total variation accounted for by the leading PCs and it will in general 
depend on specific aspects of the original dataset.  

For any new observed radiance spectrum, obsr , we can compute the equivalent PC scores by 
projecting the radiances upon the full set of eigenvectors derived from the covariance matrix of the 
training dataset.  As discussed above, less than n eigenvectors are typically required to reproduce most 
of the information in the observed spectra. Therefore, we can compute a vector of m truncated 

observed PC scores, obsp : 

 
1

,

n
obs obs
i i k k

k
p A r

=

= ∑  (5) 

where i=1,m. The truncated PC scores may be regarded as an efficient encapsulation of the original 
observation that may be used for storage, transmission or indeed assimilation. If required, the PC 
scores may be used to reconstruct a new radiance vector 

 
1

,

m
rec obs

i i k k
k

r A p
=

= ∑  (6) 

Even though a radiance vector containing all n channels may be reconstructed from the m truncated 
PC scores, it should be stressed that the n reconstructed radiances only contain m independent pieces 
of information (the n reconstructed radiances are formally equivalent to the m PC scores used in the 
reconstruction) and crucially rec

ir ≠ obs
ir  (i.e. PCA is not a lossless technique). The reconstructed 

radiances will also have different error characteristics. 

In addition to reducing the dimension of the observed information, the value of m can also be tuned to 
achieve filtering of the observations, using PCA to separate variations of the atmospheric signal from 
variations of the random instrument noise. It is argued that the atmospheric signal is more highly 
correlated across the spectrum and as such is represented by the high rank eigenvectors (i.e. those with 
larger eigenvalues). Conversely, the random instrument noise is spectrally uncorrelated and is thus 
represented by low rank eigenvectors. In principle we may attempt to exploit this separation (in ranked 
eigenvector space) to retain only eigenvectors related to atmospheric signal and discard those 
eigenvectors describing instrument noise. Of course great care must be taken if truncating the PC 
scores for this specific purpose. Small scale and small amplitude atmospheric features can be 
important sources of rapid forecast error growth in NWP. However, such features may not be strongly 
correlated across the measured spectrum and could potentially be confused with noise (and removed if 
the truncation is too severe).  
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3 Spectral bands and PC generation 

For the purposes of this prototype demonstration of PC score assimilation it is assumed that we have 
access to the full IASI measured spectrum – and that we are only investigating the suitability of PCA 
as a mechanism to efficiently present this information to an assimilation system. As such we are 
deliberately separating this from the potential application of PCA to the logistical issue of compressed 
data dissemination.  

The short wave spectral region covered by IASI band 3 (2000-2760 cm-1) contains excellent 
temperature sounding channels which could in principle be exploited for assimilation in operational 
NWP. For instance, the lower-tropospheric peaking channels located in the spectral region between 
2380 and 2400 cm-1 have the sharpest possible weighting functions of any part of the infrared 
spectrum. In addition, compared to equivalent long wave channels, short wave temperature sounding 
channels are less contaminated by water vapour and ozone absorption. Previous PC score assimilation 
investigation have been carried out based on the use of short wave data and results documented in a 
series of technical reports (e.g. Matricardi and McNally, 2012).  However, IASI short wave channels 
are not currently used operationally at ECMWF for a number of reasons, which include day-night 
variations in data usability due to non-local thermodynamic equilibrium (LTE) effects and high 
instrument noise. Indeed the latter was the incentive of initial PCA investigation. 

In this study we only consider the assimilation of PC scores generated from the long-wave region of 
the IASI spectrum. This choice is made for two reasons: Firstly we avoid the day / night sampling 
issues associated with short wave data. Secondly, we are able to compare the PC assimilation system 
with a parallel radiance system based upon a selection of the operationally used IASI long wave 
channels.  

3.1 The long-wave channels and derived PC scores  

The assimilation of PC data requires the conversion of IASI radiances into PC scores. The radiances 
used in this paper are a subset of those used operationally in cycle 36R1 of the ECMWF Integrated 
Forecasting System (IFS) (see Collard and McNally, 2008 for details on the channel selection). This 
subset comprises 165 long wave channels in IASI band 1 and has been obtained by removing from the 
original dataset ten channels located in the ν2 water vapour vibro-rotational band. Excluding radiances 
with a strong sensitivity to water vapour allows us to run assimilation experiments in more controlled 
conditions - using sounding channels covering the region between 645 and 875 cm-1 with a primary 
sensitivity to temperature and the surface. It should be noted however, that some of the remaining 
channels are still marginally affected by water vapour absorption corresponding to weak water vapour 
lines originating from the edge of the water vapour pure rotational band. 

The conversion of radiances to PC scores is carried out using Eq. 5, i.e. by projecting the radiance 
vector on the fixed basis of synthetic eigenvectors utilized in the PC based fast radiative transfer 
model used in the assimilation (see section 4 for details).  Note that the eigenvectors are derived from 
the 165 long wave radiances described above. 
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When compared to spectral radiances, the physical interpretation of PC score observations is less 
intuitive. This is illustrated in Figure 1 where we have plotted the temperature Jacobians 
(corresponding to a US Standard Atmosphere) for the 10 highest ranking PC scores. Radiance 
temperature Jacobians are broad, but relatively localized in a given part of the atmosphere (e.g. surface 
or stratosphere) whereas the PC score Jacobians are not localized and can have multiple maxima 
throughout the entire atmosphere (e.g. at the surface and in the stratosphere).  

 
 

Figure 1. The temperature Jacobian for the first 10 PCs for the US Standard Atmosphere. 

 

Table 1. The skin temperature Jacobian for the first 10 PCs for the U.S. Standard Atmosphere. 

PC number Jacobian (K-1) 

1 -9.181 

2 5.459 

3 -11.783 

4 -2.428 

5 4.281 

6 -0.896 

7 -0.797 

8 0.487 

9 -1.357 

10 0.565 
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Near-surface layers give a contribution to the signal that is significantly larger for the first three PCs. 
While a sensitivity to the stratosphere is apparent to a variable extent in a number of PCs, PC#2 has 
the largest contribution from that region. It should be noted that the highest ranking PCs also have a 
significant sensitivity to changes in the surface skin temperature (see Table I). This is  particularly true 
for PC#1 whose behaviour is closely related to that of a window channel radiance and has the 
strongest response to the presence of cloud. However, in this case if the warm surface is obscured by a 
cold cloud, we expect a warming of the observed PC#1 score (opposite to the response of an infrared 
window channel that would cool). Cloud signals appear as an asymmetry (i.e. a warm tail) in the 
histogram of the observed minus computed PC score departures.  

4 PC assimilation methodology 

4.1 Overall architecture of the assimilation system 

The methodology adopted in this study for the direct 4D-Var assimilation of PC scores is shown 
schematically in Figure 2. The observed IASI spectra are first screened for the presence of clouds and 
contaminated spectra are discarded. This must be done before assimilation as the PC training has been 
performed with only completely clear data and none of the eigenvectors correspond to cloud signals. 
The clear spectra are then projected on to the 165 long wave channel basis described previously, to 
produce a vector of observed PC scores PC

OBSY . Each vector of observed PC scores has length n=165, 

but crucially we assimilate only the first m of these (where m < n in ranked order).  In truncating the 
vector of observed PC scores we make the assimilation highly efficient, while preferentially retaining 
highest rank PC scores (1,2,3 ..m) that convey most information about the atmospheric state.  

 

 

Figure 2.  The flow diagram of the direct PC score assimilation. 
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The m observed PC scores are then provided as input to the 4D-Var. Trajectory estimates of the 
atmospheric state (X) are used as input to the observation operator PC_RTTOV (Matricardi, 2010) to 

compute model equivalents of the m PC scores, )(XY PC
B .  If we ignore the time integration of the 

forecast model to the observations, the cost function to be minimized is essentially: 

 1 1( ) [ ] [ ] [ ( )] [ ( )]T PC PC T PC PC
B B OBS B OBS BJ X X X B X X Y Y X O Y Y X− −= − − + − −  (7) 

where the accuracy of the background estimate of the atmospheric state XB is described by the error 
covariance B and the accuracy of the observations and associated observation operator is described by 
the error covariance O. The specification of O is very important and is described separately in section 
4.4. During the minimization, perturbations of the atmospheric state are mapped into the observation 
(PC) space by the tangent linear of the observation operator PC_RTTOV_TL. Likewise, gradients of 
the cost function with respect to the PC score observations are evaluated and mapped into gradients 
with respect to the atmospheric state by the adjoint of the observation operator PC_RTTOV_AD. The 
atmospheric state XA that minimizes the above cost function is referred to as the analysis and the 
departures of this from the background atmospheric state XB are referred to as analysis increments 
defined at the start of the 4D-Var window. 

4.2 The observation operator for PC scores 

The observation operator utilized for the simulation of the PC scores (PC_RTTOV) is a PCA-based 
version of the RTTOV (Matricardi et al., 2004) fast radiative transfer model. For a detailed description 
of PC_RTTOV the reader can refer to Matricardi (2010). Here we will discuss only those aspects 
related to the specific nature of this study.  

The PC_RTTOV fast radiative transfer model performs rapid and accurate simulations of PC scores of 
IASI radiances using a multiple linear regression scheme. In this scheme, the PC scores are expressed 
as a linear combination of a selected number of polychromatic radiances simulated by the 
conventional RTTOV fast model. The regression coefficients are computed using the PC scores 
obtained from the eigenvectors of the covariance matrix of a large dataset of synthetic noise-free clear 
sky radiances calculated using an accurate line-by-line model. Note that the principal component 
scores are calculated from radiance spectra that have been normalized using the diagonal elements of 
the IASI instrument noise covariance matrix. The PC scores can be computed for any state vector that 
includes variable profiles of temperature, water vapour, ozone, and surface parameters.  The number 
of predictor variables used in the regression algorithm is a tunable parameter in the model. By varying 
this parameter, we can trade off computational efficiency against the accuracy of the simulations.  

Regression coefficients for the PC scores derived from the long wave radiances used in this study are 
available based on 30, 35, 40, 45, and 50 predictors. The accuracy of the PC score fast model is 
illustrated in Figure 3 where we have plotted the standard deviation of the difference between exact 
PC scores (i.e. derived from line-by-line radiances) and fast model PC scores predicted with 35 and 50 
variables respectively.  The statistics in Figure 3 have been obtained applying the exact and fast 
calculations to an independent set of 5190 atmospheric profiles (i.e. independent of the population 
used to train the fast model). It is evident that the error can be reduced by increasing the number of 
predictors used in the regression. The systematic component of the error (not shown here) is a 
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negligible fraction of the random component.  Finally, it should be noted that the errors shown in 
Figure 3 only represent the ability of the fast PC_RTTOV to reproduce the exact PC scores computed 
from line-by-line radiances. In that respect, they do not represent the total error in the PC_RTTOV 
simulated PC scores as this is likely dominated by weaknesses in the underlying line-by-line model to 
describe the true radiative transfer of the atmosphere. 

 

 
Figure 3. The standard deviation of the difference between exact and simulated PC scores. The 
black curve denotes results obtained using 35 predictors whereas the red curve denotes results 
obtained using 50 predictors. 

4.3 The truncation of the PC scores in the assimilation 

We have to decide how many PC scores ( m ) should be retained to replace the original n radiances to 
improve the efficiency of the assimilation system without incurring in a damaging loss of information. 
Depending on the application, several different methods have been proposed to determine the optimal 
value of m (e.g. Turner et al. 2006). In this paper, we have followed the approach taken by Antonelli et 
al. (2004). To this end, we have assembled a large ensemble of 10882 observed clear IASI spectra and 
have reconstructed them from a variable number, p, of truncated PC_RTTOV synthetic eigenvectors. 
We have then computed the following quantity:  

 
1

1( ) ( ( )
n

j j
j

d p R p E
n =

= −∑  (8) 

where )( pRj is the root-mean-square of the radiance reconstruction error and jE is the root-mean-

square of the instrument noise. Here p denotes the number of truncated PC scores, j is the IASI 
channel number, and n is the total number of channels.  

In an ideal situation where we know exactly the instrument noise, the function )( pd  should attain a 
minimum in correspondence of the optimal number of eigenvectors (i.e. the reconstruction residuals 
mostly represent instrument noise). Although a minimum value is actually reached for 11 
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eigenvectors, this number is likely to not correspond to the optimal value. The reason for this is 
twofold. Firstly, the tabulated values of the noise used in Eq. (8) may differ from the true values. If for 
instance we alter the noise values by ± 10%, the minimum moves to 5 and 16 eigenvectors 
respectively. Secondly, by truncating the synthetic eigenvectors we introduce spectroscopic errors in 
the reconstructed radiances. In addition, because the variability of CO2 is not represented in the 
synthetic eigenvector basis, the truncation will remove part of the CO2 signal. In conclusion, although 
not optimal, the number of 11 eigenvectors can nevertheless still be taken as reasonable indication of 
the number of eigenvectors we need to retain. 

4.4 The specification of the error covariance matrix R 

A considerable amount of attention has been focussed on the specification of the PC score observation 
error covariance matrix O. The matrix O should describe the combined error of the observations (PC 
scores) and forward operator (PC_RTTOV). Departure statistics have been accumulated over long 
periods to obtain an initial estimate of the elements of O , computing the standard deviation of the 
observed minus background (O-B) departures. Of course these values are not optimal in that they 
contain a contribution from the uncertainties in the background state and as such can only be regarded 
as an upper bound upon the required error.  

To separate the contribution of the observation error and the background error in the departure 
statistics, Hollingsworth and Lönnberg (1986) and Desroziers et al. (2005) have proposed different 
techniques. In the Hollingsworth/Lönnberg method pairs of background departures are used to 
compute statistics as a function of the separation. To estimate the observation error, the values of the 
covariances are extrapolated to zero separation. It is then assumed that the spatially uncorrelated 
component of the background departures is largely dominated by the observation error. 

In the Desroziers method, the elements of the error matrix O are expressed as the expectation value  

 O d dT
a bE  =    (9) 

where ad and bd are the analysis and background departures in the observation space. This 

relationship can be derived from the quasi-linear estimation theory used as the basis for variational 
assimilation schemes like 4D-Var. Assuming initial estimates of the weights are reasonable, the 
Desroziers algorithms produces a refined estimate of the observation error. A detailed description of 
the experimental set-up used to compute the tuned observation errors can be found in Bormann et al. 
(2010).  

Observation errors for the first 20 PC scores are shown in Figure 4 where the black curve denotes 
results for the Desroziers case, the red curves denotes results for the Hollingsworth/Lönnberg case and 
the green curve represents the standard deviation of the observed minus background departures. The 
error estimates given by the Hollingsworth/Lönnberg and Desroziers methods are very similar with the 
possible exception of the first three PCs. From Figure 4 it is evident how the background departures of 
the low rank PCs have standard deviations approaching a value of 1 which is expected due to the noise 
normalization of the radiances.  
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Finally, it should be noted that both the Hollingsworth/Lönnberg and Desroziers method can be used 
to diagnose inter-PC score error correlations. Correlations between the errors of different PC scores 
are generally small, with some larger values between high rank PCs (PC#1 and PC#2). However, the 
decision has been taken to avoid this complication and we have neglected the off-diagonal terms of the 
error covariance matrix.  

 

 
Figure 4. Estimates of observation errors for the PCs used in the 20 PC score assimilation 
experiment. The green line represents the standard deviation of the background departures. The 
Hollingsworth/Lönnberg and Desroziers errors are plotted as red and black lines respectively.  

4.5 Cloud detection in radiance space and PC based quality control 

For the purposes of this prototype study, the assimilation of PC scores is restricted to clear sky 
conditions. In the ECMWF operational radiance assimilation clouds are detected using the algorithm 
described in McNally and Watts (2003). However, this scheme requires as input the computation of 
overcast radiance at the interface of each atmospheric layer and this quantity is not readily available 
from the current implementation of PC_RTTOV. To avoid an awkward hybrid system (where RTTOV 
is used for cloud detection and PC_RTTOV used for subsequent assimilation) an alternative cloud 
detection has been developed. It uses three separate tests applied to uncorrected radiance departures 
and seeks to identify only fully clear IASI scenes (for details see Matricardi and McNally (2011)).  

In conjunction with the new cloud detection scheme, an additional PC based quality control is used 
and acts as an extra check for residual cloud contamination. As discussed in section 3.1, PC#1 has 
similar characteristics to an infrared window channel – in particular a heightened sensitivity to the 
surface emission and the presence of clouds. Warm departures of the observed PC#1 score from the 
clear sky computed value are an indication that the observation is affected by clouds. Using a visual 
inspection of AVHRR imagery overlaid with IASI pixels it was found that a threshold of 40 units 
applied to the departure in PC#1 is sufficient to reject most cases of residual cloud contamination. 
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4.6 Bias correction for PCs 

Biases in the observations or due to systematic errors in the radiative transfer model and cloud 
screening are removed using the variational bias correction scheme (VarBC)  described by Dee, 2004. 
This is an adaptive correction algorithm used operationally at ECMWF for all satellite data including 
IASI radiances (and indeed some in situ observations such as aircraft) where the bias is expressed as a 
linear combination of pre-defined atmospheric predictors. These predictors account for air-mass 
variations of the bias correction, but also variations dependent upon the scan geometry.  For 
consistency with radiance observations, but also because PC scores are likely to be influenced by 
rather similar sources of systematic error, we have applied the same multi-predictor bias correction 
scheme for the assimilation of the PC scores. 

After an initial training phase of typically one to two weeks it is found that the adaptively computed 
bias corrections for PC scores perform extremely well - becoming very stable in time and removing 
almost all systematic differences between the observations and the analysis. An exception to this are 
the corrections computed for PC#1 and PC#2 that are slower to stabilize and tend to drift slightly over 
time. These particular PC scores have the strongest sensitivity to the surface and any residual cloud 
contamination - and the slow drift of these bias corrections to a large extent mimics the behavior often 
seen in the corrections computed for window channel radiances. For radiances this drift is attributed to 
a feedback between the quality control steps and the adaptive bias correction. In the PC context, the 
feedback is between the bias correction and the PC#1 departure quality control. However, for the low 
rank PC scores we also have the additional complication of stratospheric sensitivity. A number of 
measures have been employed to alleviate this feedback process in the context of radiance assimilation 
including limiting the number of degrees of freedom of the bias correction (i.e. the number of 
predictors), anchoring with trusted uncorrected data and applying additional departure independent QC 
checks (e.g. from collocated imager information). Similar steps have been tested to limit the drift of 
the low rank PC score bias corrections and while they have indeed reduced the amplitude of variations 
over time - none have stopped the drift completely. While this slow variation of bias corrections is 
undesirable and certainly warrants further investigation, previous experience with radiances - 
confirmed by tests here with PC scores - suggests that it is not a significant source of degradation in 
the assimilation. This is mainly because the window channel radiances and their analogue low rank PC 
scores have little sensitivity to the free atmosphere and generally have rather low weight in the 
assimilation system (compared to other radiances and PC scores). 
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5 Assimilation experiments 

5.1 Set up of the experiments 

To quantify the performance of the long-wave PC score assimilation system we have designed a set of 
4D-Var assimilation experiments that consist of a baseline experiment, a radiance assimilation control 
experiment and a PC score experiment. The baseline experiment (hereafter referred to as the BASE) 
uses only conventional data plus atmospheric motion vectors from polar and geostationary satellites. 
The radiance control experiment (hereafter referred to as RAD) is identical to BASE, but additionally 
assimilates 165 IASI long wave radiances discussed in section 3.1. The PC score experiment (hereafter 
referred to as the PC) is identical to the BASE, but additionally assimilates IASI PC scores (derived 
from the 165 long wave radiances). All experiments have been run using a reduced horizontal 
resolution version (T511 ~ 40Km) of the ECMWF IFS cycle 36R1 with 91 vertical levels. Two 
periods in different seasons are tested - from 12 June 2010 to 15 July 2010 and from 15 December 
2010 to 15 January 2011. The RAD and PC experiments utilize the same pixel based cloud detection 
scheme (described in section 4.5) and we assimilate IASI data (radiances or PC scores) only over 
ocean.  

The choice of PC score truncation threshold is based upon a set of short preliminary assimilation 
experiments. Starting from an initial number of 10, the number of PC scores assimilated was varied up 
to the full number of 165 scores. It was found that beyond the around 20 PC scores there was no 
discernable improvement in performance (as measured by the fit of the analysis to other observations). 
Thus it was decided to retain only the first 20 PC scores for the main assimilation testing.  

In a similar set of preliminary assimilation experiments it was found that both the Desroziers and 
Hollingsworth/Lönnberg refinements of the diagonal observation error for PC scores produced 
significantly better results than simply using the untuned standard deviation of observed minus 
background departures. However, the Desroziers error values gave an additional marginal 
improvement over the Hollingsworth/Lönnberg estimates so these have been adopted for the main 
assimilation testing presented here. For the observation error covariance matrix O of the RAD 
experiment we have chosen to use the same diagonal matrix used operationally at ECMWF (see 
Collard and McNally, 2008 for details). The reason for making this choice was to ensure we have a 
reliable control based on a sound operationally proven radiance assimilation system (rather than 
attempting to produce two matched systems with no heritage).  
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5.2 PC score and Radiance Data Coverage 

An example of the data coverage for a single assimilation window (i.e. 12 hours) is illustrated in 
Figure 5. In the left panel we have plotted the coverage for the long wave PC score assimilation 
system (PC) whereas in the right panel we have plotted the coverage for the long wave radiance 
assimilation system (RAD). As expected the majority of fully clear pixels are identified in the Tropics 
and it can be seen that both systems suffer data loss in regions with extensive and frequent cloud cover 
– in particular the mid-latitude storm tracks and the equatorial convection zones. Crucially however, 
the two panels show that the data coverage for the two systems is almost identical (differences in 
sample size are typically less than 1%). Small discrepancies are inevitable: after a number of days the 
PC and RAD systems evolve different background fields of temperature and humidity; radiance 
calculations used in the cloud detection are performed by different fast models (i.e. RTTOV and 
PC_RTTOV) and the PC system employs an additional cloud check based on the PC# departure. 
However, the differences are sufficiently small that we can eliminate data coverage as a source of any 
change between the PC and RAD systems. 

 

 

Figure 5. The 12-hour data coverage for (left panel) the radiance and (right panel) the PC score 
assimilation system. 

5.3 Impact on the assimilation: analysis increments and the fit to radiosonde data 

Figure 6 shows zonally averaged root-mean-square temperature analysis increments evaluated over 
one month of assimilation during the June-July 2010 period. Results for the reference IASI long wave 
radiance experiment (RAD) are plotted in the left panel while results of the IASI long wave PC score 
experiment (PC) are plotted in the right panel. Analysis increments (defined as the change to the initial 
conditions at the beginning of the 4D-Var analysis window) are a good indication of how much and 
where the background errors are being corrected by the assimilation of observations. It can be seen in 
figure 6 that the two experiments display largely similar patterns of analysis increments structures – 
indicating that (at least statistically) the assimilation of either radiances or PC scores results in similar 
adjustments of the background fields. In some areas there are small differences in magnitude of 
increments, for example in the Tropics between 300 and 600 hPa where the assimilation of IASI PC 
scores produces slightly larger adjustments than the IASI radiances. As the coverage of assimilated 
data is almost identical, it is likely that the differences can be attributed to the slightly greater weight 
assigned to the PC scores by virtue of the assigned observation error covariance.  However, in these 
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statistics (and those of the winter period which are not shown) there is certainly no evidence of any 
anomalous or spurious behavior in the analysis increments produced by the PC score experiment. As 
such we conclude that the IASI PC scores are conveying broadly similar information to the 
assimilation as the IASI radiances. 

 

Figure 6. Cross section of root-mean-square of temperature analysis increments for the period 15 
June 2010-15 July 2010. Results are for (left panel) the RAD assimilation experiment, (right 
panel) the PC assimilation experiment. 

Further evidence of the similarity between the two systems is found by examining how the 
assimilation of either IASI PC scores or radiances modifies the fit of the analyses to radiosonde 
temperature observations. The comparative lack of conventional data in the extratropical Southern 
Hemisphere (-20ºS-90ºS) means that radiosonde fitting statistics are particularly sensitive to changes 
in the use of satellite observations and provide a reliable quality metric.  Statistics of the fit to 
radiosondes temperatures for the background (left panels) and analyses (right panels) averaged over 
the two test periods are shown in figures 7 and 8. In each panel the standard deviations are shown with 
respect to the BASE experiment (background values are explicitly normalized by the BASE values to 
improve visualization). Thus, reduced values for either the RAD system (red line) or the PC system 
(green line) indicate the extent to which the assimilation of the IASI satellite (in either form) improves 
the fit to radiosonde data compared to the BASE assimilation (black line). The most salient feature of 
the results plotted in Figures 7 and 8 is that the assimilation of IASI data in either form adds 
considerable value over the BASE system, with PC scores producing radiosonde data fits that are very 
close to those generated by the radiance assimilation experiment. Differences between the PC and 
RAD systems are much smaller than the improvement of both over the BASE, but for some regions of 
the atmospheric column (in both the troposphere and stratosphere) the assimilation of PC scores 
produces a slightly better fit to radiosondes than the radiance assimilation.  Consistent features are 
seen in the statistics of the Northern Hemisphere and Tropics (not shown) – although the magnitude of 
the improvements over the BASE is much smaller with either IASI system, reflecting the 
comparatively smaller influence of satellite data. Statistics of the fit to other observed parameters such 
as radiosonde wind and humidity further confirm that the assimilation of 20 IASI PC scores produces 
results at least comparable with those obtained from the assimilation of 165 radiances – or in some 
respects marginally better. As with the analysis increments the very small differences between the 
IASI PC and radiance assimilation systems are most likely attributable to the observation error 
covariances assumed.   
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Figure 7. The fit to radiosonde temperature data of the background (left panel) and analysis (right 
panel) in the Southern Hemisphere.  Standard deviations for the period 15 June 2010 - 15 July 
2010 are shown for the BASE (black line), RAD (red line), and PC (green line) experiments. 

 
Figure 8. The fit to radiosonde temperature data of the background (left panel) and analysis (right 
panel) in the Southern Hemisphere.  Standard deviations for the period 15 December 2010 - 15 
January 2011 are shown for the BASE (black line), RAD (red line), and PC (green line) 
experiments. 

5.4 Computational efficiency of the data assimilation 

The primary objective of developing a PC score assimilation system is to improve computational 
efficiency. Performance tests indicate that the 4D-Var minimization requires 25% less computer 
resources (elapsed CPU time) when 20 PC scores are used compared to the system that assimilates 165 
IASI radiances. This figure represents a significant saving inside the time critical processing path for 
NWP centres, but could potentially be improved even further. The cost of assimilating a given 
observation is strongly influenced by the numerous calls to the observation operator and its adjoint 
(which for PC scores is PC_RTTOV and PC_RTTOV_AD). In this study  we have used 50 predictors 
inside PC_RTTOV, which is the maximum accuracy, but lowest efficiency setting of this tunable 
parameter. Offline tests have shown that the number of predictors could be reduced from 50 to 35 
without significantly affecting the accuracy of the PC score simulation. This would help further 
improving the computational efficiency of the PC score assimilation system.  
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5.5 Impact on Forecasts 

Forecasts have been run from analyses generated by the BASE, RAD and PC assimilation systems and 
verified using ECMWF operational analyses, which contain information from the full global observing 
system including the operationally assimilated IASI radiances.  Forecast scores over the two test 
periods have been computed as the change in the root mean square error compared to the BASE and 
the differences normalized by the forecast error of the BASE experiment. While this normalization is 
arguably the best way to illustrate the impact on forecast errors in the medium range, it can result in 
the amplification of small differences in the shorter range (0 to 72 hours) where errors in the verifying 
analyses may be important.  Forecast scores are tabulated in Tables II and III for the June-July and 
December-January periods respectively. Results are presented in terms 500hPa  geopotential height for 
the extratropical Northern and Southern Hemispheres (20ºN-90ºN / 20ºS-90ºS), and in terms of the 
850 hPa wind vector for the Tropics (20ºS-20ºN).  A positive value of the forecast score means that 
the use of IASI data improves forecast accuracy compared to the BASE and values with a statistical  
significance of 95% or better are indicated in bold italic.  

Tables II and III  show that in all regions the inclusion of IASI data has a positive impact on the 
forecasts accuracy compared to the BASE, with, as expected the largest impact in the Southern 
Hemisphere. Most importantly, however, the PC score assimilation system is producing forecasts of 
similar accuracy to those from the radiance assimilation system. In fact, if we consider only the 
statistically significant figures, we see that the use of PC scores results in a marginally improved 
forecast skill for some regions and ranges compared to the radiance assimilation. The opposite is seen 
in the statistics for the extratropical Southern Hemisphere during December-January case when the PC 
score system exhibits less, albeit still positive, skill.  Despite these differences, the overall conclusion 
from the forecast scores confirms that of the analysis diagnostics – suggesting the PC score 
assimilation performs at least as well as the radiance system.  

  



 
The direct assimilation of principal components of IASI spectra in the ECMWF 4D-Var  
 
 

 
Technical Memorandum No.690 17 
 

 

Table 2. Normalized root-mean-square error difference for 500 hPa geopotential and 850 hPa 
wind vector forecasts verified versus the operational analysis. Positive values indicate a positive 
impact from the inclusion of IASI radiance (RAD) or PC (PC) data. Figures in bold indicate a 
signal significant at the 95% level or better.  Results cover the period from 15 June 2010 to 15 
July 2010 for extratropical Northern Hemisphere (N), Tropics (Tr), and extratropical Southern 
Hemisphere (S).  

Region Day 1 Day 3 Day 5 

RAD experiment 
N z 0.048 0.022 0.037 
Tr w 0.016 0.034 0.019 

S z 0.228 0.154 0.114 
PC experiment 
N z 0.068 0.029 0.028 

Tr w 0.034 0.047 0.034 
S z 0.188 0.155 0.134 

 

Table 3. Normalized root-mean-square error difference for 500 hPa geopotential and 850 hPa 
wind vector forecasts verified versus the operational analysis. Positive values indicate a positive 
impact from the inclusion of IASI radiance (RAD) or PC (PC) data. Figures in bold indicate a 
signal significant at the 95% level or better.  Results cover the period from 15 December 2010 to 
15 January 2011 for extratropical Northern Hemisphere (N), Tropics (Tr), and extratropical 
Southern Hemisphere (S).  

Region Day 1 Day 3 Day 5 

RAD experiment 
N z 0.044 0.044 0.024 

Tr w 0.012 0.019 0.024 
S z 0.286 0.201 0.131 
PC experiment 
N z 0.065 0.059 0.044 
Tr w 0.034 0.033 0.025 
S z 0.252 0.160 0.100 
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6 Summary and future directions 

The operational ECMWF 4D-Var has been adapted to allow the direct assimilation of Principal 
Component Scores derived from high spectral resolution infrared sounders. The primary aim of this 
development is towards an efficient use of the entire measured spectrum that could not be achieved by 
traditional radiance assimilation.  The prototype system presented in this study uses 20 PCs instead of 
165 IASI longwave radiances - achieving an 8 fold reduction in data volume and a 25% reduction in 
the overall cost of assimilation. These figures have been achieved with a rather conservative setting of 
the tunable accuracy of the PC_RTTOV radiative transfer model and further computational savings 
could be achieved. 

The new scheme has been extensively tested in a baseline environment where conventional 
observations and AMVs are assimilated, but IASI are the only satellite sounding data used (either in 
the form of PCs or radiances). The absence of other satellite data amplifies the influence of IASI and 
allows changes to the analyses to be more directly attributable.  Testing over two separate one month 
periods (winter and summer) suggests that the quality of the analyses produced by the assimilation of 
20 IASI PCs is almost identical to that obtained when 165 IASI radiances are assimilated. Indeed in 
some respects - specifically the fit to radiosonde observations - the analyses based on the assimilation 
of IASI PCs are marginally improved. The verification of forecasts launched from these test analyses 
further confirms that there is no loss of skill from the assimilation of IASI PCs compared to that of 
radiances. 

While the performance of the PC assimilation prototype is very impressive - it is important to 
highlight its current limitations. Arguably the most important of these is the restriction to fully clear 
spectra. It is known that completely clear scenes are rather rare - estimates vary, but typically they 
account for less than 15% of the data measured by an IASI instrument with a 12Km field of view.  
Thus the next step is to investigate how well the PCs assimilation methodology extends to partly 
cloudy or fully overcast scenes.  While no fundamental obstacle to this is envisaged, the training of 
Principal Components specifically in cloudy skies will be required. 

Another short term priority is to test the IASI PC approach in a full data assimilation system that 
contains all operational observations (satellite and conventional). While testing in the baseline 
environment is extremely demanding and we are confident that the conclusions reached in this study 
are robust - it is known that the background error characteristics in a densely observed system are 
different.  In particular background errors tend to be smaller and spatially localised such that the 
empirically tuned truncation threshold (20 PCs) and observation error covariance R (including 
correlations) may have to be revisited to account for this. 

Finally, while this study considered only data in the IASI long wave region, it follows a previous 
investigation in to the use of PCs to represent the IASI shortwave spectrum. A logical future step is to 
consider the extraction of information from the dedicated IASI water vapour and ozone bands towards 
the exploitation of the full IASI spectrum. 
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To summarise, the results obtained from the direct assimilation of IASI PC scores are extremely 
significant and encouraging. They demonstrate the viability of an alternative route to radiance 
assimilation for the exploitation of data from high spectral resolution infrared sounders in NWP.  
Progress in this area is very timely - at the time of writing there were four such instruments in space 
(IASI on METOP-A and B, AIRS on AQUA and CrIS on NPP). Work is now urgently needed to take 
this prototype system forward to a stage where it can be considered as an option for the safe and 
efficient operational exploitation of these crucial instruments. 
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