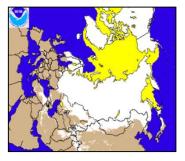
ECMWF Land Surface Data Assimilation System activities

Patricia de Rosnay, Joaquín Muñoz Sabater, Clément Albergel, Lars Isaksen and Gianpaolo Balsamo

SRNWP surface team, 5 September 2011


Land surface data assimilation

1999 2004 2010/2011 OI screen level analysis **Revised snow analysis Optimum Interpolation (OI) snow analysis Pre-processing NESDIS data** Douville et al. (2000) Drusch et al. (2004) High resolution NESDIS data (4km) Mahfouf et al. (2000) Cressman snow depth analysis Soil moisture 1D OI analysis using SYNOP data improved **SEKF Soil Moisture analysis** based on Temperature and by using NOAA / NSEDIS Snow Simplified Extended Kalman Filter relative humidity analysis cover extend data (24km)

Drusch et al. GRL (2009) de Rosnay et al. (2011)

SYNOP Data

NOAA/NESDIS IMS

Use of satellite data

METOP-ASCAT de Rosnay et al., 2011

SMOS Sabater et al., 2011

Validation activities

Albergel et al. 2011

Outline

- Snow analysis (Optimum Interpolation)
- Soil Moisture analysis
 - Simplified Extended Kalman Filter analysis
 - Use of ASCAT data (active microwave)
 - Use of SMOS data (passive microwave): Joaquín Muñoz Sabater
 - Validation activities: Clément Albergel

ECMWF Surface analysis projects web pages: http://www.ecmwf.int/research/ESA_projects/SMOS/index.html http://www.ecmwf.int/research/EUMETSAT_projects/SAF/HSAF/

Slide 3

ECMV

Snow Analysis

Snow Quantities:

- Snow depth SD (m)
- Snow water equivalent SWE (m) ie mass per m²
- Snow Density $\rho_s,$ between 100 and 400 kg/m3

$SWE = \frac{SD \times \rho_s}{1000}$ [m] Background variable used in the snow analysis:

- Snow depth S^b

computed from forecast SWE and density (Dutra et al., J Hydromet. 2009)

Observation types:

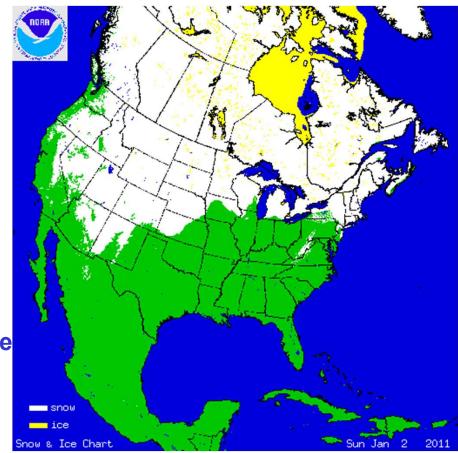
- Conventional data: SYNOP snow depth (S^O)
- Satellite: Snow cover extent (NOAA/NESDIS)

NOAA/NESDIS Snow extent data

Interactive Multisensor Snow and Ice Mapping System

- Time sequenced imagery from geostationary satellites
- AVHRR,
- SSM/I
- Station data

Northern Hemisphere product


- Daily
- Polar stereographic projection

Resolution

- 24 km product (1024 × 1024)
- 4 km product (6044 x 6044)

Information content: Snow/Snow free Format:

- 24km product in Grib
- 4 km product in Ascii

More information at: http://nsidc.org/data/g02156.html

SRNWP surface team, 5 September 2011

Slide 5

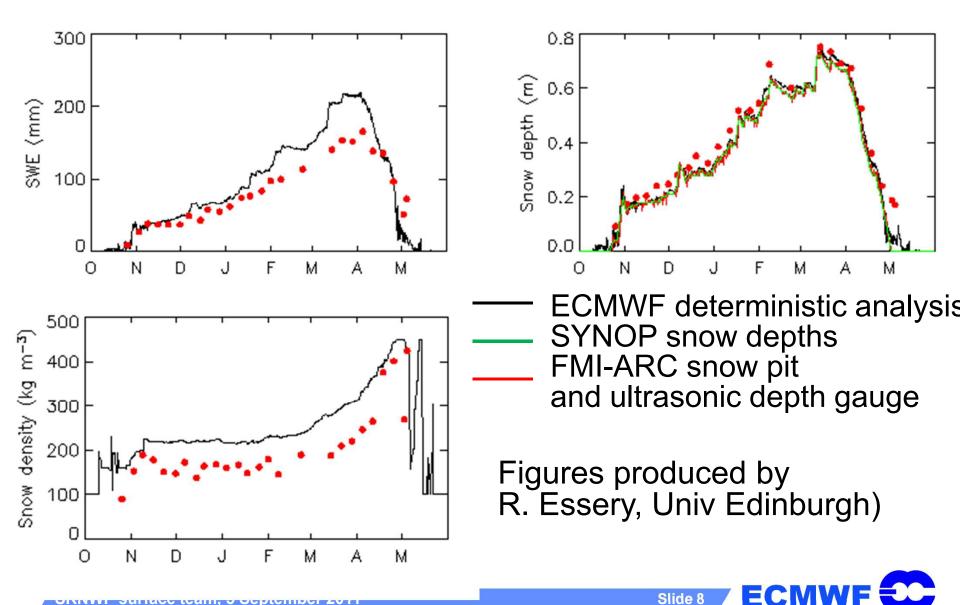
Snow analysis recent improvements

- 1987-2010: Cressman Interpolation (1959) ; use of SYNOP
- 2004: Introduction of the use of NOAA/NESDIS data (resol. 24km)
- 2010: revised snow analysis:
 - OI: Optimum Interpolation Snow analysis, using weighting functions of Brasnett, J. Appl. Meteo. (1999). OI snow depth analysis (used at ECMWF, CMC, JMA) makes a better use of the model background than Cressman (used at DWD and still used at ECMWF in ERA-Interim).
 - **NESDIS:** NOAA/NESDIS 4km ASCII snow cover product (substituting the 24 km GRIB product). The new NESDIS product is of better quality with better coverage in coastal areas.
 - **QC:** Introduction of blacklist file and rejection statistics. Also allows easier identification of stations related to MS queries.

ELIVI

Comparison against SYNOP data

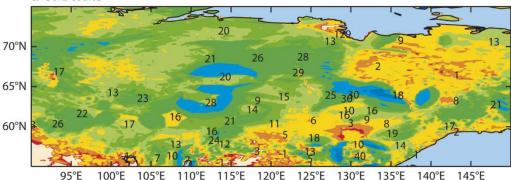
Old analysis (Cressman and NESDIS 24km)
New analysis (OI and NESDIS 4km)


RMSD between analysis and observations ^(u) ⁽

de Rosnay, Balsamo and Isaksen, IGARSS 2011

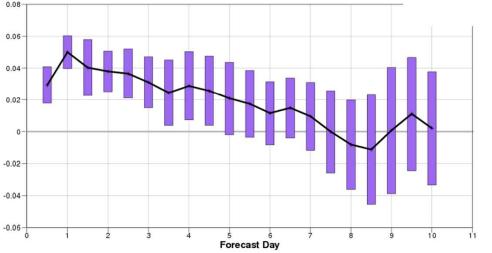
→ Much reduced analysis errors with the new snow analysis than with the old one

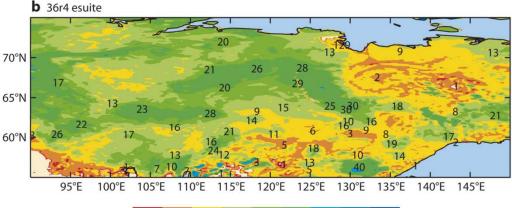
Independent validation


Sodankyla, Finland (67.368N, 26.633E) Winter 2010-2011

New snow Analysis in Operations

Old: Cressman NESDIS 24km Snow depth (cm) analysis and SYNOP reports on 30 October 2010 at 00 UTC


a 36r2 osuite



New: OI NESDIS 4km

FC impact (East Asia):

Root mean square error forecast E.asia Lat 25.0 to 60.0 Lon 102.5 to 150.0 Date: 20091201 00UTC to 20100228 00UTC 500hPa Geopotential 00UTC Confidence: 90% Population: 90

10

15

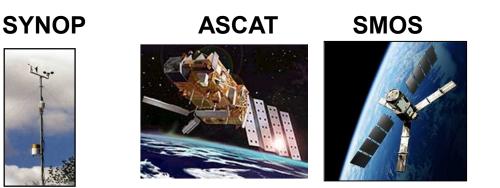
20

- OI has longer tails than Cressman and considers more observations.

50

100

150 4000


-- Model/observation information optimally weighted by an error statistics.

- Snow analysis
- Soil Moisture analysis
 - Simplified Extended Kalman Filter analysis
 - Use of ASCAT data (active microwave)
 - Use of SMOS data (passive microwave): Joaquín Muñoz Sabater
 - Validation activities: Clément Albergel

Why an EKF soil moisture analysis ?

- Dynamical estimates of the Jacobian Matrix that quantify accurately the physical relationship between observations (eg T2m, Rh2m) and soil moisture
- Flexible to account for the land surface model H-TESSEL evolution
- Makes it possible to combine different sources of information
- Possible to investigate the use of new generation of satellite data:
 - SM active microwave (C-band ERS, MetOp/ASCAT, L-band SMAP)
 - SM passive microwave (L-band SMOS, SMAP)

EKF soil moisture analysis

For each grid point, Analysed soil moisture state vector $\boldsymbol{\theta}_a$:

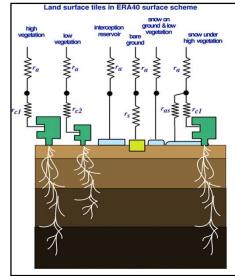
$$\boldsymbol{\theta}_{a} = \boldsymbol{\theta}_{b} + \boldsymbol{K} \left(\boldsymbol{y} - \mathcal{H} [\boldsymbol{\theta}_{b}] \right)$$

- *θ* background soil moisture state vector,
- ${\mathcal H}$ non linear observation operator
- y observation vector
- K Kalman gain matrix, fn of

H (linearsation of \mathcal{H}), **B** and **R** (covariance matrices of

background and observation errors).

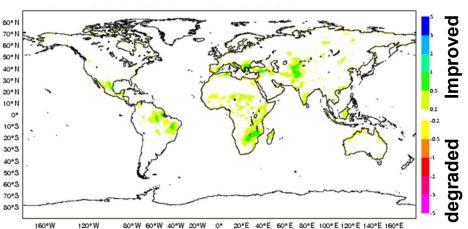
Observations:

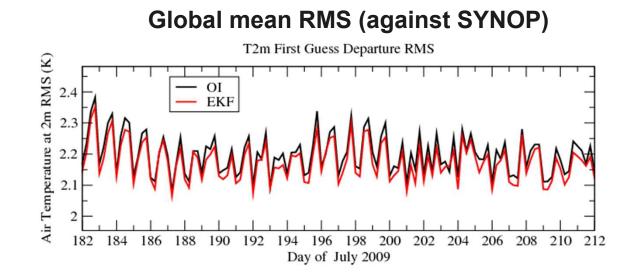

• Used in operations:

Conventional observations (T2m, RH2m)

• Used in Research:

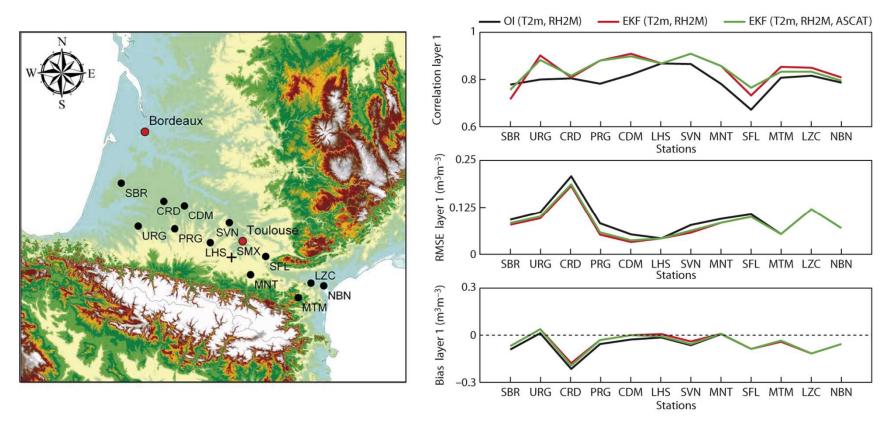
Satellite data related to soil moisture (e.g. ASCAT product, SMOS Brightness temperature).




H-TESSEL (Balsamo et al., 2009, 2011)

Impact on 2-meter Temperature

- EKF consistently improves SM & T2m
- EKF implemented in 2010 in operations
- Makes it possible to assimilate satellite data to analyse soil moisture


T2m error (OI-SEKF) → EKF improves T2m

ECMWF Soil Moisture Analysis verification

Verification of ECMWF SM over the SMOSMANIA Network

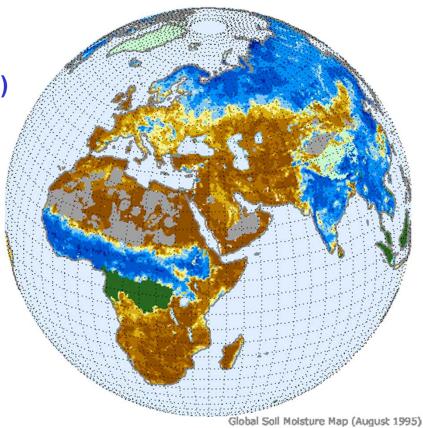
→ SEKF soil moisture improves soil moisture compared to the 1D OI
→ Also improves T2m

Used in operations since November 2010

(de Rosnay et al., 2011)

- Snow analysis
- Soil Moisture analysis
 - Simplified Extended Kalman Filter analysis
 - Use of ASCAT data (active microwave)
 - Use of SMOS data (passive microwave): Joaquín Muñoz Sabater
 - Validation activities: Clément Albergel

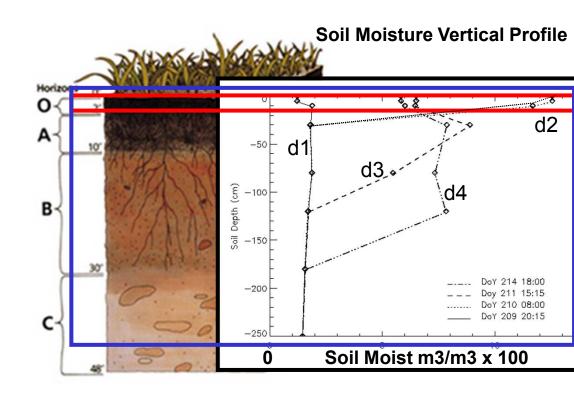
Use of Active microwave data: ASCAT


Advanced Scatterometer on MetOP (launched in 2006)

Active microwave instruments operating at C-band (5.6GHz)

Surface soil moisture index (ws) based on the TUWien retrieval scheme (Wagner et al. 1999)

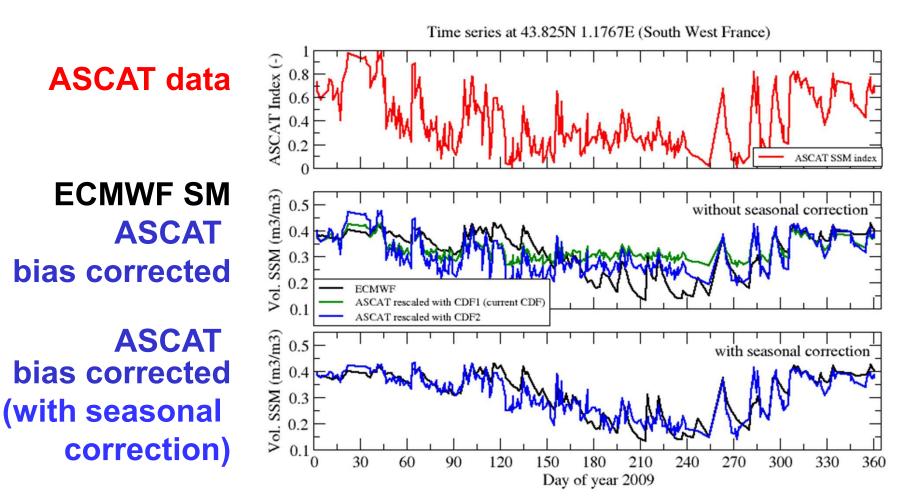
ASCAT operational SM product (EUMETSAT)


ASCAT Root Zone Soil Moisture Retrieval

Surface Soil Moisture Top soil moisture measured: 0-2cm ASCAT, 0-5cm SMOS

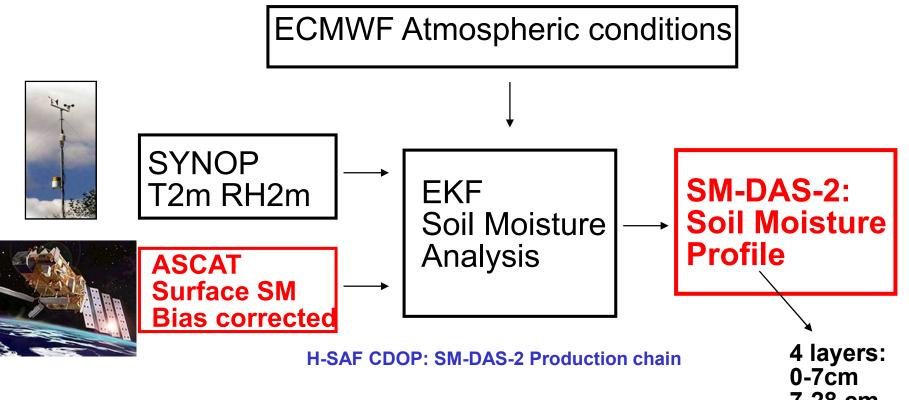
Root Zone SM Profile

Variable of interest for Soil-Plant-Atm interaction, Climate, NWP and hydrological applications


Root Zone SM Profile: Accurate retrieval requires to account for physical processes

→ ECMWF contribution to the EUMETSAT H-SAF Root zone retrieval based on ASCAT data assimilation

http://www.ecmwf.int/research/EUMETSAT_projects/SAF/HSAF/


ASCAT Bias correction

Bias correction: crucial component of the data assimilation system Used at ECMWF for - Operational ASCAT soil moisture monitoring - ASCAT Soil Moisture data assimilation

ASCAT SM data assimilation

ASCAT (surface swath) → SM-DAS (Root Zone profile global) 2008- 2010 ... NRT in 2012

Quality Control \rightarrow use data when:

- Incidence angle: cell number € [11,26]
- Topographic complexity ≤ 20
- Wetland Fraction ≤ 15
- Noise level ≤ 8

For Surface conditions:

- Surface is snow free
- Soil not frozen

4 layers: 0-7cm 7-28 cm 28-100 cm 100-289cm

- Snow analysis
- Soil Moisture analysis
 - Simplified Extended Kalman Filter analysis
 - Use of ASCAT data (active microwave)
 - Use of SMOS data (passive microwave): Joaquín Muñoz Sabater
 - Validation activities: Clément Albergel

