








Key points

 There is model uncertainty in weather and climate prediction.

 It is essential to represent model uncertainty.

 In weather (NWP) the problem is well defined, because we 
can use observations to determine model uncertainty.

 On the climate scales the estimation of model uncertainty is 
more challenging, since verifying data is limited 

 IMO: Stochastic parameterizations are starting to become a 
(superior?) alternative to other model-error representations



Overview

 Why should we use Model Error 
Representations (MER) for weather and 
climate predictions?

 Model Error Representations in short-range 
forecasts (Stochastic Parameterizations, Multi-
physics) 

 Impact of MER on systematic model errors 
and seasonal predictions

 Use of MER in Ensemble Data Analysis  
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Spatial scales are associated with a range 
of  temporal scales here omitted. Multi-
scale nature.
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The closure problem

The “spectral gap” 
argument (Stull 1960)



Kinetic energy spectra

Nastrom and Gage, 1985



Limited vs unlimited predictability in 
Lorenz 1969

Rotunno and Snyder, 2008 

see also: Tribbia and Baumhefner 2004 



The “Spectral Gap” (Stull, 1960)



Spectral gap not necessary for stochastic 
parameterizations 



Potential to reduce model error

 Stochastic 
parameterizations can 
change the mean and 
variance of a PDF

 Impacts variability of 
model (e.g. internal 
variability of the 
atmosphere)

 Impacts systematic error 
(e.g. blocking 
precipitation error)
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Why model uncertainty representations

 Represent/sample 
subgrid-scale 
fluctuations

 Represent 
structural model 
error 
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ensemble mean



Buizza et al., 2004

------- spread around ensemble mean
RMS error of ensemble mean

The RMS error grows faster than 
the spread 

Ensemble is

Ensemble forecast is 
overconfident 

Underdispersion is a form of 
model error

Forecast error =  initial error + 
model error + boundary error

Underdispersivness of  ensemble systems



Representing model error in ensemble 
systems

The multi-parameterization approach: each ensemble 
member uses a different set of parameterizations (e.g. for 
cumulus convection, planetary boundary layer, 
microphysics, short-wave/long-wave radiation, land use, 
land surface)

The multi-parameter approach: each ensemble member 
uses the control physics, but the parameters are varied 
from one ensemble member to the next 

 Stochastic parameterizations: each ensemble member is 
perturbed by a stochastic forcing term that represents the 
statistical fluctuations in the subgrid-scale fluxes
(stochastic diabatic tendencies) as well as altogether 
unrepresented interactions between the resolved an 
unresolved scale (stochastic kinetic energy backscatter)



Recent attempts at remedying model 
error in NWP

Using conventional 
parameterizations

 Stochastic parameterizations (Buizza
et al. 1999, Lin and Neelin 2000, 
Palmer et al 2009)

 Multi-parameterization approaches 
(Houtekamer 1996, Berner et. al. 
2010)

 Multi-parameter approaches (e.g. 
Murphy et al. 2004, Stainforth et al. 
2004)

 Multi-Models (e.g. DEMETER, 
ENSEMBLES, TIGGE, Krishnamurti et 
al. 1999)

Outside conventional 
parameterizations

 Cloud-resolving convective  
parameterization (CRCP) (Grabowski 
and Smolarkiewicz 1999, Khairoutdinov
and Randall 2001) 

 Nonlocal parameterization., e.g., 
cellular automata pattern generator 
(Palmer, 1997, 2001, Bengtsson-Sedlar
et al. 2011)

 Stochastic kinetic energy backscatter in 
NWP (Shutts, 2005, Berner et al. 
2008,2009,2011,Charron et al. 2010, 
Tennenant et. al 2010)



Stochastic kinetic-energy backscatter 
scheme 

Rationale: A fraction of the dissipated energy is scattered upscale and acts as 
streamfunction forcing for the resolved-scale flow

Total Dissipation rate from 
numerical dissipation, convection, 
gravity/mountain wave drag.

Spectral Markov chain: temporal 
and spatial correlations prescribed

ψ ′

ψψ ′∝∆ D*



Assume a streamfunction perturbation in spherical harmonics representation

Assume furthermore that each coefficient evolves according to the spectral Markov 
process 

with

Find the wavenumber dependent noise amplitudes 

so that prescribed kinetic energy dE is injected into the flow

Stochastic kinetic-energy backscatter 
scheme



Assume a streamfunction perturbation in spherical harmonics representation

Assume furthermore that each coefficient evolves according to the spectral Markov 
process 

with

Find the wavenumber dependent noise amplitudes 

so that prescribed kinetic energy dE is injected into the flow

Stochastic kinetic-energy backscatter 
scheme



Forcing streamfunction spectra by coarse-
graining CRMs

-> Glenn’s talk 



Hierarchical Parameterization Strategy

 High-resolution model informs 
output of lower resolution model

 Stochastic kinetic energy 
backscatter provide such a 
framework 

 … But there are others, e.g. 
Cloud-resolving convective 
parameterization



Stochastic kinetic energy backscatter 
schemes … 

 … in LES 
 Mason and Thompson, 1992, Weinbrecht and Mason, 2008, …

 … in simplified models
 Frederiksen and Keupert, 2004

 … in NWP
 IFS EPS, ECMWF: Shutts 2005; Berner et al. 2008, 2009; Palmer et al. 2009

 MOGREPS, MetOffice: Bowler et al 2008,2009; Tennant et al. 2010

 Canadian Ensemble system: Li et al. 2008, Charron et al. 2010

 AWFA mesoscale ensemble system, NCAR: Berner et al. 2011



Model uncertainty in short-range weather 
forecasts of WRF 



Experimental Setup

 Weather Research and Forecast Model

 15 dates between Nov 2008 and Dec 2009, 00Z and 12Z, 30 cycles 
or cases

 40km horizontal resolution and 41 vertical levels

 Limited area model: Continuous United States (CONUS)

 Initial and boundary conditions from GFS (downscaled from NCEPs
Global Forecast System) 

 Ensemble CNTL: 10 member ensemble with control physics

 Ensemble PHYS: 10 member ensemble with multi-physics scheme

 Ensemble STOCH: 10 member ensemble with  backscatter scheme

 Ensemble PHYS_STOCH: STOCH+PHYS



Multi-Physics combinations



Note:

 One of the first studies to compare multi-physics 
and stochastic parameterization within the SAME 
ensemble prediction system

 Multi-physics schemes are very tedious to maintain 
(Charron et al., 2010,  So-young Ha (pers. 
Communication), but WRF has at advantage of 
having different parameterization schemes as part 
of the release.



Verification against  Observations



Spread-Error Consistency in WRF
(without obs error estimate)
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Dependence on observation error

PHYS_STOCH
PHYS_STOCH
With obs error



Mean Bias
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Brier Score Profiles: U 

CNTL
STOCH
PHYS
PHYS_STOCH

Score difference with 
CNTL. Positive 
differences mean 
improvement over 
CNTL. Diamonds 
denote significance 
at 95% confidence 
level.

Score profile for 
CNTL



Pairwise comparison: 
T at 2m



Summary of pairwise comparison

Statistics over 
different forecast 
times, variables 
and vertical 
levels



Summary of pairwise comparison



Summary of pairwise comparison



Summary of pairwise comparison



Conclusions

 Including a model-error representation leads to ensemble 
systems that produce significantly better probabilistic 
forecasts than a control physics ensemble that uses the 
same physics schemes for all ensemble members.

 Overall, the stochastic kinetic-energy backscatter scheme 
outperforms the ensemble system utilizing multiple 
combinations of different physics-schemes. This is 
especially the case for u and v in the free atmosphere. 

 However, for T at the surface the multi-physics ensemble 
produces better probabilistic forecasts, especially when 
verified against observations (currently being improved)



Conclusions

 The best performing ensemble system is obtained by 
combining the multi-physics scheme with the stochastic 
kinetic-energy backscatter scheme. The superiority of 
the combined scheme is most evident at the surface and 
in the boundary layer.

 Consistent with other studies  (Palmer et al. (2009), 
Charron et al. (2010) and Hacker et al. (2011):Combining 
multiple stochastic parameterizations or stochastic 
parameterization with multiple physics-suites resulted in 
the most skillful ensemble prediction system.



Uncertainty in state estimation using 
WRF-DART

 Create an ensemble of analyses that is representative of 
analysis error => initial conditions

 DART- Data Assimilation Research Testbed based on 
Ensemble Kalman Filter (EnKF)

 Ensemble analysis is under-dispersive, e.g. due to 
sampling error => inflation factor => can model 
uncertainty scheme make inflation redundant?

 2 Domains nested with feedbacks: outer 45km, inner 
15km 

 Collaborators: So-young Ha, Chris Snyder
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RMS innovations of T2
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Preliminary Results

 STOCH has smallest RMS innovations for both U and T

 Adaptive inflation factor is reduced when used in 
adaptive mode

 STOCH can replace the adaptive inflation (results almost 
as good as those shown)

 But: Sampling error is fundamental different from model 
error represented by SKEBS, so maybe both should be 
retained

 Or: Combined model and sampling error into a single 
term
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Impact on Systematic Error Model Error

 Low res control (LOWRES): IFS CY31R2 T95L91

 HIGHRES: T511L91

 STOCH: Stochastic kinetic energy backscatter

 PHYS: Improved physics packages: IFS CY36

 15 (40) years: 1990-2005, forced by observed SSTs

 5 month integrations started Nov1; 1st month discarded

 Compared against (re-)analyses



Bias of z500 in IFS

Berner et al. 2011, J. Clim, submitted
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Blocking 1962-2005

Berner et al. 2011, J. Clim, submitted



Frequency-
Wavenumber
spectra of OLR 
in IFS

Berner et al. 2011, J. Clim, submitted
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Conclusions

 Increasing horizontal  resolution, improving the physics 
packages and including a stochastic parameterization all 
improve certain aspects of model error, e.g. z500 bias 

 Others aspects, e.g. tropical waves were positively 
influenced by STOCH and PHYS, but not HIGHRES

 => Unresolved scales may play an important role, but 
results also give raise to a cautionary note

 => Stochastic parameterizations should be included ab
initio in physics-parameterization development



Future work

 Understand differences between multi-physics and 
stochastic representation physically and/or 
structurally

 Impact on extreme events on decadal timescales

 Implement SKEBS in CAM and assess impact on 
climate variability



Key points

 There is model uncertainty in weather and climate prediction.

 It is essential to represent model uncertainty.

 In weather (NWP) the problem is well defined, because we 
can use observations to determine model uncertainty.

 In the climate sciences the estimation of model uncertainty is 
more challenging. 

 Stochastic parameterizations are starting to become a 
(superior?) alternative to other model-error representations



Thank you!
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