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Modelling Uncertainties
Most commonly characterised by the spread in a multi-model ensemble of 
climate projections run at different international centres, and collected in a 
common archive.

Responses of annual mean surface temperature (left) and precipitation (right) to 
SRES A1B emissions, in 21 coupled AOGCMs contributed to IPCC AR4. 



Multi-model ensembles (MMEs)
Key Strengths

• Each member extensively tested – credibility derived from tuning and validation 
against a wide range of observables

• Constructed from a large pool of alternative components – samples different 
structural assumptions

• The source of much of our knowledge of projected future climate changes

Some Limitations
• Not designed to sample modelling uncertainties in a systematic fashion (“ensemble 
of opportunity”)

• Rather small. Difficult to get robust estimates of most likely changes, or associated 
uncertainties, especially for regional changes and extreme events

• Difficult to use MMEs to assess climate risks as there is no obvious “best” way of 
determining the distribution of possible changes of which the MME is a sample.



Perturbed physics ensembles (PPEs) 

• Designed to sample uncertainties systematically within a single 
model framework  

• Executed by perturbing poorly constrained model parameters 
within expert-specified ranges

• Samples uncertainties in the [assumed] deterministic outputs of 
bulk formulae parameterisations 

• Key strength: Allows greater control over experimental design cf 
“ensembles of opportunity”

• Key limitation: does not sample structural or stochastic 
modelling uncertainties



Perturbed physics ensembles using different models

• HadCM3: Widely studied via climateprediction.net 
(Oxford Univ.) and QUMP (Met Office) projects in 
various model configurations

• NCAR CAM3.x, 4: Several projects (Jackson et al., 
Sanderson, Covey et al.) 

• MIROC3.2: (JUMP project, Yokohata et al., 2010)

• EGMAM (Free Univ. Berlin (Niehorster))
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Perturbed parameter ensembles looking at 
different parts of the earth system

Murphy et al. 2004, Webb et al. 2006, Harris et 
al. 2006, Rougier et al. 2009, Collins et al 2006, 
2010

• Much work focused on atmosphere 
parameters (understanding drivers 
of uncertainty in climate sensitivity 
and regional climate change)

• But also simulations looking at 
ocean, sulphur cycle, carbon cycle: 
Important if a more comprehensive 
sampling of uncertainties is needed 
to provide robust information on 
risks.



Atmosphere Parameters (HadCM3 QUMP experiments)

Large Scale Cloud
Ice fall speed

Critical relative humidity for formation

Cloud droplet to rain: conversion rate and 
threshold

Cloud fraction calculation 

Convection
Entrainment rate

Intensity of mass flux 

Shape of cloud (anvils) (*)

Cloud water seen by radiation (*) 

Radiation

Ice particle size/shape

Cloud overlap assumptions

Water vapour continuum absorption (*) 

Boundary layer
Turbulent mixing coefficients: stability-
dependence, neutral mixing length

Roughness length over sea: Charnock constant, 
free convective value

Dynamics
Diffusion: order and e-folding time

Gravity wave drag: surface and trapped lee wave 
constants 

Gravity wave drag start level 

Land surface processes

Root depths

Forest roughness lengths

Surface-canopy coupling

CO2 dependence of stomatal conductance (*)

Sea ice

Albedo dependence on temperature

Ocean-ice heat transfer



Different experiments choose different parameter sets, and have different aims

Yokohata et al (2010), 
MIROC3.2

Jackson et al (2008), CAM3.1

• Results will depend on the design of the perturbation strategy, as well as on the base model used 
for the PPE.

• Study of climate sensitivity and cloud feedbacks has been a major (though not exclusive) focus



Comparison of global climate feedbacks between ensembles

Different Met Office HadCM3 PPEs cf CMIP3 
multi-model ensembles (Collins et al., 2010)

MIROC PPE cf HadCM3 PPE 
(Yokohata et al., 2010)

• PPEs sample a spread of global climate feedbacks, in some cases comparable to CMIP3

Climateprediction.net HadCM3 PPEs cf 
CAMcube PPE (Sanderson, 2010)



PPEs also simulate a  range of regional outcomes for present 
climate, and greenhouse-gas forced changes

Climateprediction.net 
PPE

CAMcube PPE 

Sanderson (2010) 



Understanding how parameter-driven uncertainties in PPEs 
depend on structural properties of the model

MIROC PPE cf HadCM3 PPE 
(Yokohata et al., 2010)



Understanding processes driving changes and their uncertainties

Global climate sensitivity 
(Rougier et al., 2009)

From QUMP and cpdn 
ensembles of HadSM3



Understanding processes driving changes and their uncertainties

Regional changes in hot 
days (Clark et al., 2010)

From QUMP ensemble of 
HadSM3



Using a PPE to optimise skill in model development

Jackson et al (2008), 
CAM3.1

• Can improve performance 
against a set of observables by 
identifying good parts of 
parameter space using a 
simulated annealing algorithm 
…

• … but the end point depends on 
where you start from, and the 
posterior distributions of 
parameter values are still quite 
broad



Using metrics of model performance to rule 
out unrealistic parts of parameter space

To date,  effort 
mostly focused on 
multiannual means 
of key observables

e.g., Met Office 
QUMP project uses 
eigenvectors of 
seasonal mean 
fields of 12 
variables

Sexton et al. (2011), submitted



Constraining parameters using mean climate observables

• Low values of the entrainment parameter (which gives high climate sensitivity in HadCM3) 
are ruled out quite effectively, but the degree of constraint found on other parameters varies

Sexton et al. (2011), submitted



Additional possibilities for observational constraints

e.g., initial NWP error tendencies can also be used to downweight low settings for 
entrainment (Rodwell and Palmer, 2007) 

• Potential to use the response of the fast physics in NWP to cheaply identify good parts of 
parameter space

• Potential to achieve a stronger overall constraint by combining evidence from NWP and 
climate evaluations in “seamless model assessment”



Making observationally-constrained projections 
from climate model ensembles: One approach

• Find relationship
• Find observed value
• Read off prediction
• Find observational 

uncertainty
• Use to diagnose prediction 

uncertainty
• Add uncertainty diagnosed 

from scatter
• Caveats: Relationship may 

be specific to the ensemble 
used; Relies on ability to 
specify observational 
uncertainties accurately 

e.g. Allen et al (2000), Stott and Kettleborough (2002), Piani et al (2005), Knutti and Meehl 
(2006), Stott et al (2006), Sanderson et al (2008)



Another approach: Bayesian climate prediction based on PPEs
• Expert prior distributions for 

model parameters

• GCM simulations sampling 
the parameter space of one 
climate model

• Train an emulator to predict 
GCM output anywhere in 
parameter space

• Compare each emulated 
model variant with past 
observations and assign a 
relative likelihood

• Form a weighted posterior 
distribution of predictions

• Done by constructing a joint 
probability distribution of all 
uncertain objects in the 
problem

• Good for handling 
multivariate prediction 
problems e.g., Goldstein and Rougier (2004)



UKCP09: Probabilistic national scenarios derived from 
climate model ensembles

Three different 
emission scenarios

Seven different 
timeframes 

25km grid, 16 
admin regions, 
23 river-basins 
and 9 marine 
regions



Inputs to probabilistic projections for UKCP09

Observational
Constraints

Structural
Model Errors

Regional
Climate Model Carbon Cycle

Atmosphere

Sulphate 
Aerosol

Ocean

Probabilistic
Climate

Projections



• UKCP09 was based on 400 different variants of the Met Office Hadley Centre 
climate model HadCM3, systematically sampling uncertainties in key 
processes, and augmented by results from other international climate models

Sampling uncertainties realistically



Estimating effects of structural model error: “Discrepancy”

• Discrepancy represents model errors (arising from missing or structurally 
deficient representations of processes) which cannot be resolved by varying 
uncertain parameters in the model used for the perturbed parameter 
ensemble (HadSM3)

• For UKCP09, we estimated this by using an international ensemble of 12 
alternative climate models (AR4, CFMIP) as set of proxies for the real 
system. 

• For each multimodel ensemble member, find a few points in the HadSM3 
parameter space which give the closest historical and climate change 
simulations that we can find.

• The outstanding mismatches are then estimates of the effects of missing or 
structurally deficient representations of processes in HadSM3

• Pool these distances over all 12 multimodel ensemble members to give an 
estimated distribution for discrepancy

• Main caveat: Does not account for systematic errors common to all the 
models



Combining perturbed parameter ensembles, multi-
model ensembles and observational constraints



Testing the robustness of the results

• Projections inevitably depend on expert assumptions and choices

• However, sensitivities to some key choices can be tested



The future: Application to seamless prediction systems ?

Lines 
represent:

ERA40/Interim

Nine variants 
of HadCM3

Other models

• FP6 ENSEMBLES project included a first go at assessing multi-model, 
stochastic physics and perturbed parameter ensembles in initialised seasonal-to-
decadal hindcasts



Effects of initialisation and sampling 
uncertain model parameters

Time series of pattern correlation with observations: 9 year 
mean surface temperature over land

Initialised (ensemble-mean) Initialised (single member)

Uninitialised (ensemble-mean)



Can PPEs be designed to sample key drivers of 
predictability on seasonal-to-decadal time scales ?

Correlation between the AMO index and detrended 5-year averaged June-July-August 
surface temperature anomalies (top row) and precipitation anomalies (bottom row). 
Observations (left panels), and different members of a HadCM3 perturbed physics ensemble 
(middle and right panels).



Summary
• Study of perturbed parameter ensembles in climate simulation and 

prediction has grown

• A systematic approach to sampling model uncertainties, useful 
alongside the community multi-model ensemble approach 

• Properties depend on the chosen base model, and the experimental 
design

• Applications in understanding drivers of uncertainty, model 
optimisation, finding relationships between observables and future 
predictions, and identifying structural model limitations 

• Can be used to make climate projections providing a basis for 
adaptation decisions, when combined with multi-model information 
and observational constraints



Outlook

• Should be seen as complementary to multi-model and 
stochastic physics approaches

• Effectiveness in initialised near-term forecasting should 
be assessed.. as well as in centennial projections 

• Application of observational constraints is particularly 
important in PPEs. Scope to develop this in seamless 
prediction context
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