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ABSTRACT

Multimodel combination has become an accepted technique toimprove the reliability of weather and climate
projections on all time-scales. The underlying mechanism is that of a systematic widening of ensemble spread
which often leads to a reduction of overconfidence and hence an improvement in prediction skill. If enough
training data (e.g. reforecasts) are available, multimodel skill can be further enhanced by applying performance-
based model weights. Remaining reliability deficits can, atleast in principle, be accounted for by statistical
postprocessing. On the long time-scales of climate change,however, the lack of verification data implies that
neither the effects of model weighting, nor the realism of the underlying paradigms of ensemble interpretation, can
be objectively judged. Any uncertainty estimate obtained for this time-scale is therefore necessarily conditional
on the models available as well as on prior assumptions concerning the credibility and statistical properties of the
participating single models. These limitations indicate that there is a clear need for more systematic approaches
to estimate model uncertainty, particularly on the long time-scale of climate change.

1 Introduction

Multimodel combination is a pragmatic and well-accepted technique to estimate the range of uncer-
tainties induced by model error. The success of multimodelsin improving the reliability of weather
and climate projections has been demonstrated in numerous studies (e.g.Krishnamurti et al., 1999;
Palmer and Co-authors, 2004; Weigel et al., 2008). In the following, some conceptual issues with re-
spect to the construction, interpretation, potential and limitations of multimodel ensembles are dis-
cussed. This is first done from the perspective of weather forecasts and seasonal predictions (Section 2),
and then from the perspective of long-range climate projections (Section 3). Conclusions are given in
Section 4.

2 Multimodels in weather and seasonal forecasting

On the short time-scales of weather and seasonal forecasting, prediction skill of a model can be sys-
tematically assessed by verification, i.e. by comparing past forecasts, or reforecasts, with corresponding
observations by appropriate skill metrics. Similarly, also the effects of multimodel combination, and the
strengths and weaknesses of different combination methods, can be systematically assessed by verifi-
cation. In this section, the following three questions are discussed: Why do multimodels improve skill
(Section 2.1)? What is the conceptual difference between skill gain due to multimodel combination and
skill gain due to recalibration (Section 2.2)? And, can the skill of multimodels be further enhanced by
assigning skill-based weights to the participating singlemodels (Section 2.3)?
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2.1 Why do multimodels improve skill?

In the case of deterministic forecasts, it is straightforward to demonstrate the effect of model averaging
on the expected prediction error (e.g.Annan and Hargreaves, 2011): Let m1, m2, ..., mn be (determin-
istic) forecasts obtained fromn models, letM = 1

n ∑n
i=1 mi be the multimodel mean, and letx be the

verifying observation. The expected mean squared error (MSE) of a single model forecast can then be
formulated as:
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That is, the MSE of the multimodel average,(x−M)2, is always lower than (or equal) the average MSE
of the single model forecasts. However, it can also be shown that there is always at least one model that is
equal or better than the model average. Yet, in practice it isusually not possible to judge a priori which
model that would be at a given time. Indeed, the individual flaws and strengths of models typically
vary with forecasting context (location, predictand, initialization time, etc.), so that in the long run,
i.e. averaged over a sufficient number of grid-points and forecast realizations, multimodel approaches
usually outperform any single-model strategy (Hagedorn et al., 2005).

From a probabilistic perspective, i.e. if several single model ensemble (SME) forecasts are pooled to-
gether to a multimodel ensemble (MME) and are verified with a probabilistic skill metric, the picture
changes in that situations can be found where even a model that consistently performs better than the
other models over the whole range of prediction contexts maybe outperformed by a multimodel (e.g.
Doblas-Reyes et al., 2005; Weigel et al., 2008). In the following, this apparent paradox is explained and
resolved with the help of a simple conceptual model of seasonal predictability (Weigel et al., 2009).
Note that, despite the seasonal focus of the following discussion, the same line of argumentation holds
for other time-scales, such as weather forecasting.

Consider a set of observationsx (e.g. seasonal averages of surface temperature at a given location).
Assume that each observation can be formulated as the sum of amodel-predictable signalµ and an
unpredictable noise termεx, that is

x = µ + εx . (2)

µ can be thought of as the expected atmospheric response to slowly varying and predictable boundary
conditions such as anomalies in sea-surface temperature, while εx represents the chaotic and unpre-
dictable components of the observed dynamical system.x, µ andεx are assumed to have zero mean,
i.e. anomalies are considered rather than absolute values.Let σ2

εx
be the unpredictable internal variabil-

ity, i.e. the variance of the (hypothetical) distribution of possible outcomes, given the predictable signal
µ . This situation is illustrated in Figs. 1a and b: the presence of a given predictable signalµ shifts, and
on average also narrows, the distribution of possible outcomes with respect to climatology.

Now assume that prior to each observationx a corresponding ensemble forecastf = ( f1, f2, ..., fM) with
M ensemble members has been issued. Assume that these forecasts are issued as anomalies with respect
to the mean of the model climatology. If the ensemble forecasts are perfectly reliable, then the observa-
tions x and the individual ensemble member forecastsfi should be statistically indistinguishable from
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Figure 1: Illustration of reliable and unreliable forecasts (adapted fromWeigel et al., 2009). Consider a climatol-
ogy of observed outcomes (a). Under the influence of anomalies in relevant and predictable boundary conditions
(e.g. SST in the context of seasonal forecasting, or a predictable flow regime in weather forecasting), the distri-
bution of possible outcomes is shifted and sharpened w.r.t.climatology (b). The expectation of this constrained
distribution is the potentially predictable signalµ , and its standard deviation isσεx. A reliable ensemble (c) would
fully sample this distribution of possible outcomes. An unreliable ensemble with ensemble spreadσεi 6= σεx does
not appropriately sample this distribution (d), and the ensemble mean may differ fromµ by an error shiftεβ . Note
that the probability densities are scaled differently herefor illustrative purposes.

each other. This implies that, for a given predictable signal µ , each forecast memberfi represents an
equally likely random sample from the distribution of possible observable states. A reliable ensemble
forecast therefore has the following structure:

fi = µ + εi (3)

with σ2
εi

= σ2
εx

. This is illustrated in Fig. 1c. The ensemble mean is then an unbiased estimator of the
predictable signalµ , and the ensemble spread estimates the uncertainty of the true outcome.

For real ensemble prediction systems, however, the expected ensemble means are not necessarily iden-
tical with the predictable signalsµ . In fact, ensemble forecasts are often seen to be overconfident,
meaning that the ensemble spread is too narrow while being centered at the wrong value. This can be
considered in the conceptual model of Eq.3 by adding an additional scalar error termεβ - rather like the
idea of model error which affects all ensemble members equally:

fi = µ + εβ + εi (4)

with σ2
εi

< σ2
εx

. This is illustrated in Fig. 1d. Note that the individual member forecastsfi, while still
being statistically indistinguishable from each other, are now statistically different from the observations
x. In such a forecasting system, the ensemble mean is not any more an unbiased estimator of the
predictable signal, and the forecasts are unreliable. Suchoverconfidence is penalized by probabilistic
skill metrics and implies lower skill scores than if the forecasts were reliable.

Now assume that an MME is constructed by combining the outputof several (overconfident) SMEs
stemming from different models. If all models see the same predictable signalµ , and if the model
errorsεβ are independent, the combination leads to a widening of the ensemble spread, a reduction in
the error of the ensemble mean (theεβ -terms cancel out), and thus a reduction of overconfidence and
an increase of skill. This is illustrated in Fig. 2, where a synthetic generator of forecast-observation
pairs based on Eqs.2-4 (details inWeigel et al., 2009) has been applied to assess the effect of model-
combination on skill. As can be seen, multimodel combination reduces overconfidence and improves
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Figure 2: Expected skill of multimodel ensemble forecasts as a function of the number of participating single
model ensembles (adapted fromWeigel et al., 2008). The red line indicates well-calibrated reliable ensembles
and the black line represents highly overconfident ensembles. The ensembles have been generated from synthetic
toy model simulations. It can be seen that only in the latter case does model-combination truly enhance prediction
skill, because multimodel combination of overconfident single model ensembles widens the spread. The underlying
‘mechanics’ of multimodel combination is illustrated by the four small panels at the bottom of the plot: The
combination of more and more overconfident single model ensembles (shown as grey shading) successively widens
the ensemble spread and reduces the ensemble overconfidenceuntil eventually the entire predictable signal is
correctly sampled and the forecasts are reliable.

skill beyond the skill of the best participating SME. Under these conditions, even the addition of a poorly
performing model can improve the skill of the MME, but only ifthe poor performance of the SME is due
to overconfidence and not lack of predictable signal. This direct link between overconfidence and the
success of multimodel combination has also been identified with real seasonal forecasts (Weigel et al.,
2008).

2.2 Multimodels versus recalibration

Having seen that the widening of ensemble spread and thus thereduction of overconfidence is a key
mechanism to explain the success of multimodel combination, the question arises as to whether a simi-
lar effect could be achieved in a cheaper way by a recalibration-based inflation of ensemble spread? In its
simplest configuration, such a recalibration strategy could for example consist of multiplying the ensem-
ble mean with a scaling factorr, and the ensemble spread with a scaling factors(e.g.Doblas-Reyes et al.,
2005; Weigel et al., 2009). If applied to the conceptual model of Eq.4, a recalibrated forecastf RC

i would
then be given by:

f RC
i = r

(

µ + εβ
)

+sεi . (5)

Optimum values ofr ands can be determined from reforecasts. Note that here it is assumed that sys-
tematic biases have already been removed a priori.Weigel et al.(2009) have demonstrated that such an
approach can indeed strongly enhance the reliability and thus the skill of (seasonal) ensemble forecasts.
However, sincer is in most cases smaller than 1 due to the predominating forecast overconfidence (im-
plying that the ensemble mean is shifted towards the climatological mean), such a recalibration scheme
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implicitly destroys a part of the predictable signalµ and thus a part of the predictable variance. In con-
trast to that, MMEs may in the ideal case, that is if all participating single models “see” the same signal
µ and have independent model error termsεβ , become reliable by canceling out theεβ -terms while
retaining the predictable signalµ . This leads to an improvement of the skill attribute of resolution.
In principle, multimodel combination therefore has the potential to yield superior results, particularly
since the effectiveness of most recalibration schemes strongly depends on the length of the reforecast
data record available and on distributional assumptions. In reality, however, only of a finite number of
SMEs is usually available (“ensembles of opportunity”, seeSection 3.1), and the model errorsεβ are
often highly correlated and fail to cancel out, so that in many cases the skill of recalibrated SMEs is
comparable to or even better than the skill of MMEs (Weigel et al., 2009). Several studies have indi-
cated that optimum results may be obtained by a combination of recalibration and model combination
(e.g.Stephenson et al., 2005), i.e. the two techniques should be treated as complementary rather than
competing approaches.

2.3 Model weighting

So far, it has been tacitly assumed that the models to be combined “see” the same predictable signalµ ,
but in fact there may be major differences in how well individual models resolve the physical processes
that are relevant for predictability. For instance, a seasonal prediction model which is not able to resolve
ENSO events will necessarily fail to exploit the seasonal predictability arising from ENSO. In contrast
to the discussions of Section 2.2, the addition of such a model to an ensemble of ENSO-resolving
models would reduce skill. One option to avoid such skill degeneration is weighting the participating
SMEs according to their prior performance. Many approachesof model weighting have been suggested
in literature. They are typically based on a non-linear optimization of past forecasts with respect to a
specific skill metrics, Bayesian approaches with climatology as a prior, or regression approaches (e.g.
Rajagopalan et al., 2002; Raftery et al., 2005; Coelho et al., 2006; DelSole, 2007; Weigel et al., 2008).
All these approaches have in common that they indeed can yield superior skill as compared to equal
weighting, but only if enough training data are available toobtain robust weights. If the weights are not
robust, more skill may actually be lost than could potentially be gained by model weighting. This is
illustrated in Fig. 3. The plot is based on the analysis of seasonal 2-m temperature forecasts stemming
from 40 yr of hindcast data of two ensemble prediction systems (details inWeigel et al., 2010). It can be
seen that the equally weighted combination of these two models yields on average substantially higher
skill than any of the two single models alone, and that skill can be further improved by model weighting.
However, if the amount of independent training data is systematically reduced, the weight estimates
become more uncertain and the average prediction skill drops. In fact, if the weights are obtained from
less than 20 yr of hindcast data, weighted multimodel forecasts are in this example actually outperformed
by the equally weighted ones. This issue will be discussed again in the context of long-range climate
projections in Section 3.2.

3 Multimodels in long-term climate change projections

As in weather and seasonal climate forecasting, multimodels are also widely used in the context of
multidecadal climate change projections to reduce overconfidence and enhance reliability of the pro-
jections. In fact, the climate projections and corresponding uncertainty estimates provided inIPCC
(2007) heavily rely on multimodels. Fig. 4a, for example, shows the multimodel mean and one stan-
dard deviation uncertainty range for global temperature for the historic simulations and projections for
three IPCC SRES scenarios. The key challenge associated with such uncertainty estimates is illustrated
in Fig. 5: A probability distribution needs to be derived from a finite set of model projections. The
uncertainty estimate obtained depends amongst others on three fundamental issues: Has a sufficient
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Figure 3: Average global predic-
tion skill (in % RPSS) of seasonal
forecasts (JJA, lead-time 1 month)
of 2-m temperature, obtained from
the DEMETER database and veri-
fied against ERA40 data for 1960-
2001. Shown if the RPSS for
ECMWF’s System 2, for the Met Of-
fice’s GloSea 2, and for multimodels
constructed with (i) equal weights;
(ii) with optimum weights obtained
grid-point wise from 40, 20, and 10
yr of hindcast data by optimizing the
ignorance score; and (iii) with ran-
dom weights.

number of models been included in the MME to sample all relevant aspects of model uncertainty (Sec-
tion 3.1)? Is each model equally credible, or should weightsbe assigned (Section 3.2)? And what is
the underlying statistical framework guiding the interpretation of the ensemble members (Section 3.3)?
Here only a few brief comments to these questions are provided. For a more in-depth discussion, the
reader is referred toKnutti et al. (2010) andWeigel et al.(2010). Note that these aspects are equally
relevant for the probabilistic interpretation of multimodel weather and seasonal forecasts. However, due
to the existence of verification data on shorter time-scales, the realism and potential benefits of the as-
sumptions made can be systematically assessed and judged, and combination strategies can be adjusted
accordingly. Moreover, remaining reliability deficits canat least in principle be corrected a posteri-
ori by statistical post-processing techniques such as recalibration. The key challenge in the context of
multidecadal climate change projections arises from the fact that the choices and assumptions made for
ensemble combination and interpretation cannot be validated in the sense of a robust verification so that
any uncertainty estimate obtained is therefore inherentlyBayesian (see also discussion in Section 3.2).

Figure 4: (a) Multi model mean and one standard deviation uncertainty ranges for global temperature (relative to
the 1980-1999 average for each model) for the historic simulation and projections for three IPCC SRES scenarios.
(b) Mean and one standard deviation ranges (lines) plus minimum maximum ranges (symbols) for the subset of
models that have run for all three scenarios (squares) and for all models (circles). The model spread for the
scenarios B1 and A1B depends strongly on what models have been included in the ensemble. FromKnutti et al.
(2010).
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Figure 5: The key challenge in estimating model uncertaintyon the basis of multimodel climate projections: A
probability distribution needs to be derived from a finite set of model projections. This requires plenty of con-
ceptual decisions and assumptions, such as: Has a sufficientnumber of models been included in the ensemble to
sample all relevant aspects of model uncertainty? Is each model equally credible, or should weights be assigned?
If yes, how? And what is the underlying statistical framework guiding the interpretation of the ensemble members?

3.1 Ensembles of opportunity

In practice, MMEs are usually not designed according to certain criteria (e.g. criteria ensuring that struc-
tural and parameter uncertainty are optimally sampled and that all models satisfy similar performance
criteria), but rather are simply constructed on the basis ofthe model runs available. That is, it is more the
number of climate modeling centers, their budgets, priorities and their modeling experience that deter-
mine the composition of a MME than physical reasoning. Such ensembles are therefore often referred
to “ensembles of opportunity”. The addition or removal of a model from an MME is often seen to have
major consequences on the uncertainty estimates obtained,implying that the model uncertainty space is
very likely to be undersampled. This is for example evident in Fig. 4b, which shows the distributions of
the MMEs Fig. 4a is based upon, once only considering the subset of those models that have been run
for all three emission scenarios (squares), and once considering all models available for each scenario
(circles). Particularly for the scenarios B1 and A1B, the ensemble spread depends sensitively on which
models have been included in the ensemble. This dependency of the results on the “arbitrariness” of the
number of models available, together with a common lack of system in ensemble design, imposes severe
challenges in the interpretation of multimodel climate projections and thus represents a major limitation
of the multimodel approach.

3.2 Model weighting

The second important question for the interpretation of an MME of climate projections is whether each
participating model should be equally weighted (“one modelone vote”), or whether they should be
weighted according to some criteria of prior performance. Given that, in weather and seasonal forecast-
ing, performance-based weighting schemes have been successfully implemented and have been demon-
strated to improve the average prediction skill, it may appear obvious that model weighting can also
improve the projections in a climate change context and reduce the uncertainty range. However, as
mentioned above, the two projection contexts are not directly comparable. In seasonal forecasting, for
instance, usually 20 to 40 yr of hindcasts are available, which mimic real forecasting situations and can
thus serve as a data basis for deriving optimum model weights. Within the context of climate change
projections, however, the time scale of the predictand is typically on the order of many decades, rather
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than a couple of months. This strongly limits the number of verification samples that could be used
to directly quantify how good a model is in reproducing the climate response to changes in external
forcing and, thus, to derive appropriate weights. This situation is aggravated by the fact that existing
observations have already been used to calibrate the models. Even more problematic, however, is that
we do not know if those models that perform best during the control simulations of past or present cli-
mate are those that will perform best in the future. Parameterizations that work well now may become
inappropriate in a warmer climate regime. Physical processes, such as carbon cycle feedbacks, which
are small now, may become highly relevant as the climate changes (e.g.Frame et al., 2007). Given these
fundamental problems, it is not surprising that many studies have found only a weak relation between
present-day model performance and future projections (Räisänen, 2007; Whetton et al., 2007; Jun et al.,
2008; Knutti et al., 2010; Scherrer, 2011), and only a slight persistence of model skill during the past
century (Reifen and Toumi, 2009). Finally, not even the question of which model performs best dur-
ing the control simulations can be readily answered but, rather, depends strongly on the skill metric,
variable, and region considered (e.g.Gleckler et al., 2008). Evidence from several studies suggests that
the task of finding robust and representative weights for climate models is certainly a difficult problem.
This is mainly due to (i) the inconveniently long time scalesconsidered, which strongly limit the num-
ber of available verification samples; and (ii) nonstationarities of model skill under a changing climate.
If model weights are applied that do not reflect the true modelerror uncertainties, then the weighted
multimodel may have much lower skill than the unweighted one. In many cases, more information
may actually be lost by inappropriate weighting than can potentially be gained by optimum weighting
(Weigel et al., 2010). This is illustrated in Fig. 6 which shows results obtainedwith a simple conceptual
toy model of climate change projections described inWeigel et al.(2010). This toy model has been
used to assess the effects of equal, optimum and inappropriate weighting in generic terms by controlled
combination experiments of two models as a function of theirrelative skill. Note that this does not
imply that the derivation of performance-based weights is impossible by principle. However, it does
imply that a decision to weight climate models should be taken with great care. Unless there is a clear
relation between what we observe and what we predict, the risk of reducing the projection accuracy by
inappropriate weights appears to be higher than the prospect of improving it by optimum weights. Given
the current difficulties in determining reliable weights for long-range climate models, equal weighing
may for many applications well be the safer and more transparent way to go.

Having said that, the construction of equally weighted multimodels is not trivial, either. In fact, many
climate models share basic structural assumptions, process uncertainties, numerical schemes, and data
sources, implying that with a simple “each model one vote” strategy truly equal weights cannot be
accomplished. This is for example evident in Fig.7, which has been published inMasson and Knutti
(2011) and shows the results of a hierarchical cluster analysis ofthe performance characteristics of
the CMIP3 models during the control period. Models stemmingfrom the same institution or sharing
versions of the same atmospheric model are in most cases grouped into the same cluster, indicating that
they are more similar to each other than to the other models. An even higher level of complexity is
reached when climate projections are combined that stem from multiple GCM-driven regional climate
models (RCMs). Very often in such a downscaled scenario context, some of the available RCMs have
been driven by the same GCM, while others have been driven by different GCMs (e.g.ENSEMBLES,
2009). Assigning one vote to each model chain may then result in some of the GCMs receiving more
weight than others, depending on how many RCMs have been driven by the same GCM.

3.3 Statistical interpretation

The third, and probably most fundamental aspect for obtaining reliable uncertainty estimates from mul-
timodels is the underlying statistical framework that guides the probabilistic ensemble interpretation.
Many approaches have been suggested in literature, and mostof them can be assigned to one of two
interpretational paradigms. The first paradigm (“truth plus error”, e.g.Tebaldi et al., 2005; Buser et al.,
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Figure 6: Increase/decrease of the expected mean squared error (MSE) of weighted averages of two single models
(solid black: optimum weights; dot-dashed: worst possibleweights; dashed: random weights) with respect to the
benchmark of equal weighting. The results are plotted as a function of the MSE ratio of the two single models to
be combined. The combination experiments are based on the conceptual model ofWeigel et al.(2010).

Figure 7: Hierarchical clustering of the CMIP3 models for (left) surface temperature and (right) precipitation in
the model control state. Models from the same institution and models sharing versions of the same atmospheric
model are shown in the same color. Observations also are marked by the same color. Models without obvious
relationships are shown in black. FromMasson and Knutti(2011).
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Figure 8: Uncertainty (95% confidence interval width) in theposterior estimate of the change signal of sum-
mer temperature in northeastern Switzerland. The uncertainty estimates have been obtained with the Bayesian
algorithm ofBuser et al.(2009) and are shown as a function of the prior choice of ‘tolerable’ model projec-
tion uncertainty. 6 GCM-RCM-model chains of the ENSEMBLES-project (ENSEMBLES, 2009) have been used.
Scenario period is 2020-2049, reference period is 1980-2009. The figure has been adapted fromFischer et al.
(2011).

2009) is based on the assumption that each ensemble member is sampled from a distribution centered
around the truth. The other paradigm assumes that each one ofthe ensemble members considered
is ‘exchangeable’ with the other members as well as with the real system (e.g.Murphy et al., 2007;
Annan and Hargeaves, 2010). Again, due to the long time-scale considered, it is difficult to judge which
interpretation is more appropriate in a climate change context. This problem is further complicated by
the fact that any probabilistic framework applied relies onan array of more or less subjective prior as-
sumptions (discussed for example inFischer et al., 2011). For instance, the Bayesian ‘truth plus error’
algorithm ofBuser et al.(2009) requires that a prior is specified on the ‘tolerable’ range of projection
errors. The choices made for this prior largely determine the posterior estimates of model uncertainty
(see Fig. 8). This high dependency of model uncertainty estimates on the underlying statistical frame-
work and prior assumptions raises the question as to whetherit is possible at all at present to formulate
reliable probabilistic climate change projections on the basis of a multimodel ensemble of opportunity.

4 Conclusions

Plenty of studies have shown that multimodels improve the skill of weather and climate predictions,
both in a deterministic and a probabilistic context. Multimodels represent an effective ad-hoc method
to obtain first-guess estimates of model uncertainty and to make the forecasts more reliable. In contrast
to perturbed parameter or stochastic approaches, multimodels not only sample parameter and physical
uncertainty, but also structural uncertainty and numerical uncertainty of the dynamical cores. More-
over, multimodels are “politically attractive” in that theinformation provided by different modeling
centers can be jointly considered. The improvement of prediction skill by multimodels is relatively sim-
ple to understand, regardless which time-scale is considered: Multimodel combination usually widens
ensemble spread, thus reducing overconfidence and enhancing reliability. This also explains why mul-
timodels are often seen to even outperform the best participating single model. On the short time-scales
of weather and seasonal predictions, forecasts often come along with a set of past forecasts or refore-
casts that can be used for a systematic verification. With this, it is relatively straightforward to judge
the success of multimodels, to optimize the combination method applied, to assign meaningful model
weights, and to correct for remaining reliability deficits by statistical post-processing approaches. On
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longer time-scales, however, the choices and assumptions made cannot be assessed by a robust verifi-
cation. Estimates of model uncertainty thus become increasingly Bayesian, i.e. increasingly conditional
on more or less subjective prior assumptions. At the moment,there are no convincing concepts to derive
probabilistically meaningful model weights for long-range climate models, nor is there a consensus on
how quantitative estimates of projection uncertainty should be derived. Particularly the last aspect is
aggravated by the fact that multimodels typically represent ensembles of opportunity, i.e. they are not
constructed in a systematic way with a clear underlying probabilistic concept but are put together on the
basis of what is available. This highlights the need for moresystematic approaches to estimate model
uncertainty, approaches which should be based on realisticassumptions and principles.

Acknowledgments

This work has been supported by Swiss National Science Foundation through the National Centre for
Competence in Research (NCCR) Climate.

References

Annan, J. D. and J. C. Hargeaves, 2010: Reliability of the CMIP3 ensemble.Gephys. Res. Let., 37,
L02703, doi:10.1029/2009GL041994.

Annan, J. D. and J. C. Hargreaves, 2011: Understanding the CMIP3 multimodel ensemble.J. Clim. In
press..
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