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ABSTRACT

The nonlinearity of the equations governing atmospheric flow implies interscale transfers of energy and potential
enstrophy. It is important to understand how accurately these transfers are captured in numerical models, which
have finite resolution and truncation errors, especially near the resolution limit, in the presence of scale-selective
dissipation or other forms of subgrid model.

For the barotropic vorticity equation, energy and enstrophy transfers in spectral space due to truncated scales
are calculated for a high resolution reference solution andfor several explicit and implicit subgrid models. The
reference solution shows a distinct and robust signal in which enstrophy and energy are removed from scales
very close to the truncation limit and energy is transferred(backscattered) into those scales that are already most
energetic. The subgrid models are able to capture the removal of enstrophy from small scales, though none are
scale-selective enough. None of the subgrid models accurately captures the energy backscatter.

1 Introduction

In the absence of diabatic heating and frictional effects, the governing equations for atmospheric flow
imply flux-form conservation laws for energy and potential enstrophy. Thus, energy and potential enstro-
phy are conserved both locally and globally. However, the nonlinearity of the flow leads to systematic
transfers of energy and potential enstrophy between scales. In particular, there will be transfers between
those scales that are resolvable and those that are unresolvable for any given finite-resolution numerical
model. An important question, therefore, is: ‘How well are the interscale transfers handled in weather
forecast and climate models, particularly near the truncation limit?’

In this note we begin to address this question using the barotropic vorticity equation as a model prob-
lem. For the barotropic vorticity equation the conserved potential enstrophy simplifies to the enstrophy.
We use a high-resolution reference solution to calculate directly the effect of scales smaller than some
specified cut-off on the spectral tendencies of energy and enstrophy. These results are then compared
with the spectral energy and enstrophy tendencies for a variety of explicit and implicit subgrid models
when the data are truncated at the specified cut-off scale.

2 The need to remove potential enstrophy

It is well known that in two-dimensional turbulence and layer-wise two-dimensional quasi-geostrophic
turbulence there is a systematic downscale cascade of potential enstrophy (e.g. Salmon 1998). If a
numerical model captures this downscale cascade but conserves theresolvedpotential enstrophy, then
potential enstrophy must accumulate near the truncation limit, a phenomenon called ‘spectral blocking’,
leading to a noisy solution. Figure1 illustrates this spectral blocking. The barotropic vorticity equation

∂ζ
∂ t

+ ∇.(vζ ) = 0, v = ∇⊥ψ , ∇2ψ = ζ , (1)
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Figure 1: Initial vorticity (left) and vorticity after a feweddy turnover times (right) for a spectral solution of the
barotropic vorticity equation with no explicit dissipation term. Red indicates positive vorticity, and blue indicates
negative. The grid resolution is256×256and the spectral truncation is85×85.

whereζ is vorticity, v is velocity, andψ is stream function, is solved on a doubly periodic domain using
a Fourier spectral method which, in the absence of any explicit dissipation terms, conserves both the
energy

E = −
1
2

∫

ψζ dA (2)

and the enstrophy

Z =
1
2

∫

ζ 2dA. (3)

The initial state is a not-quite-uniform array of vortices.After just a few eddy turnover times the solution
has become noisy at the grid scale, and the noise becomes progressively worse as time increases.

Spectral blocking clearly points to the need for models to remove potential enstrophy near the truncation
limit. In practice all models include some form of explicit or implicit scale-selective dissipation (e.g.
Jablonowski and Williamson 2011), one of whose roles is to remove potential enstrophy.

However, a by-product of removing potential enstrophy is that energy is also removed. In the context of
the barotropic vorticity equation, if enstrophy is removedat wavenumberkdiss at a rateŻ then energy is
also removed at a ratėE = Ż/k2

diss, and this latter quantity is bounded below byŻ/k2
max, wherekmax is

the maximum resolvable wavenumber. In practice energy and enstrophy are removed over a wide range
of wavenumbers, so the ratiȯE/Ż is typically much greater than 1/k2

max.

Estimates of the enstrophy and available energy budgets forthe troposphere (Koshyk and Boer 1995,
Thuburn 2008 and references therein) suggest enstrophy andenergy throughputṡZ ∼ −10−15s−3 and
Ė ∼ −10−5m−2s−3 associated with nonlinear downscale cascades in the free atmosphere. (A much
larger energy sink of ordeṙE ∼ −10−4m−2s−3 is associated with boundary layer dissipation.) These
numbers suggest that the required average dissipation scale iskdiss∼ 10−5 m−1. There is evidence in the
literature (e.g. Shutts 2005, Bowler et al. 2009), as well asmuch anecdotal evidence (e.g. WGNE 2003)
that, at current climate resolutions and even resolutions used for ensemble weather prediction, state of
the art models dissipate too much energy in the free atmosphere, perhaps by an order of magnitude. This
can lead to insufficient variability and underdispersive ensembles.
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One way to balance both the enstrophy and energy budgets in low resolution models is to feed some
energy back in at larger scales. Diagnostics based on atmospheric analyses (Koshyk and Boer 1995)
show that small scales do indeed mediate an energy transfer into large scales. There have been various
proposals for representing this ‘backscatter’, includingantidissipation at certain wavenumbers (Koshyk
and Boer 1995), the Anticipated Potential Vorticity Method(Sadourny and Basdevant 1985), Stochastic
Backscatter (e.g. Bowler et al. 2009), and vorticity confinement (e.g. Shutts, this volume).

3 Explicit and implicit subgrid models

The nonlinear effects of unresolved scales on resolved scales may be non-negligible, and therefore they
need to be represented in numerical models. Formally this may be expressed using a filtered form of the
governing equations (using the barotropic vorticity equation for illustration):

∂ ζ̄
∂ t

+ ∇.(v̄ζ̄ ) = SG, (4)

where
SG= ∇.(v̄ζ̄ )−∇.(vζ ) (5)

is the subgrid term and an overbar represents a filter that removes scales smaller than the model resolu-
tion.

Transfers of energy and potential enstrophy between resolved scales and unresolved scales are mediated
by the unresolved scales. Therefore, the representation ofthese transfers is intimately related to the
representation of the subgrid term SG.

Broadly, there are two approaches to representing the subgrid term. The explicit approach explicitly
constructs a mathematical model for SG in terms of resolved variables and adds this to the right hand
side of the discretized equations. The simplest example is ascale-selective hyperdiffusion of the form
K∇2n, but a range of more sophisticated schemes have been proposed (e.g. Smagorinsky 1963, Sadourny
and Basdevant 1985, Frederiksen and Kepert 2006, Sagaut 2001, and references therein).

The alternative approach is known as Implicit Large-Eddy Simulation (ILES). In this approach the in-
tention is to use a discretization of the governing equations whose truncation errors are able to play the
role of a subgrid model. This approach is made plausible by noting that high-order upwind schemes
with flux-limiters typically have truncation errors that take the form of a nonlinear scale-selective dissi-
pation whose strength adapts to the strain rate of the resolved flow; these characteristics resemble those
of many physically based subgrid models (Grinstein et al. 2007b).

There have been a number of studies of the validity of ILES forthree-dimensional turbulence (e.g.
Margolin and Rider 2002, 2007, Grinstein and Fureby 2006, Grinstein et al. 2007a), and some success
has been claimed, though it appears less successful when upscale effects are important, for example near
walls (Brown et al. 2000).

The layerwise two-dimensional turbulence of large-scale atmospheric flow is a rather different flow
regime, and it is not clear that the success of ILES for three-dimensional flow will carry over. In
layerwise-two-dimensional flow energy transfers are predominantly upscale (e.g. Salmon 1998), sug-
gesting that ILES may be less successful. On the other hand, the energy spectrum is typically much
steeper, suggesting a stronger slaving of small scales to large scales and therefore a greater possibility of
representing the effects of small scales in terms of large scales. The issue is relevant to state-of-the-art
weather and climate models using semi-Lagrangian advection schemes, since the interpolation errors
introduce a scale-selective dissipation, meaning that in effect these models use the ILES approach.

Kent et al. (2011) studied the applicability of ILES to two-dimensional flow. Using the barotropic
vorticity equation as a model problem, they diagnosed the cumulative effect of truncation errors on
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Figure 2: Vorticity at time t= 200 for a spectral solution of the barotropic vorticity equation with forcing and
dissipation. Red indicates positive vorticity, and blue indicates negative. The grid resolution is512×512and the
spectral truncation is170×170.

the vorticity field for a variety of numerical schemes and compared them with the cumulative effect of
the subgrid term diagnosed directly from a high-resolutionreference solution. They found that several
schemes, with both implicit and explicit subgrid models, could capture the leading order effects of the
subgrid term when those effects were dissipative, for example when vorticity filaments were stretched
and thinned to the resolution limit. However, none of the schemes was successful when the subgrid term
involved upscale effects such as vortex merger or roll-up ofthin vorticity filaments.

4 Effects on enstrophy and energy spectra of unresolved scales: direct
calculation

In this section we use a high-resolution reference solutionof the barotropic vorticity equation to diagnose
the effects on the energy and enstrophy spectra of scales smaller than some specified cut-off. The
calculation uses a doubly periodic domain discretized using a spectral numerical method truncated at
maximum wavenumber 170× 170; the transform grid has resolution 512× 512 to avoid aliasing of
quadratic terms. The flow is initialized from a higher resolution version of the initial state shown in
Fig.1; it is forced at wavenumber 16 and there is scale-selective∇8 dissipation term to remove enstrophy
near the truncation limit and a scale-independent dissipation term (‘Rayleigh friction’) to remove energy
on large scales. Figure2 shows the vorticity field at timet = 200. (A typical peak vorticity value is of
order 1, so one time unit is roughly one eddy turnover time.) At this time the flow is close to statistically
steady. All the diagnostics presented below are for the instantaneous fields at this time.

The spectral energy and enstrophy tendencies due to small scales are calculated as follows. Assume we
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know the Fourier transforms of the vorticitŷζ (k) and the stream function̂ψ(k) = −ζ̂ (k)/|k|2, where
k is the wavenumber. First the energy and enstrophy tendency at every wavenumber are calculated for
the full-resolution data. This is done by transformingζ andψ and their spatial derivatives to grid space,
calculating the Jacobian

J(x) = ∇.(vζ ) =
∂ψ
∂x

∂ζ
∂y

−
∂ψ
∂y

∂ζ
∂x

(6)

on the transform grid and transforming back to spectral space to obtainĴ(k), (Ĵ is truncated to the
maximum retained wavenumber, 170×170 in our example, to avoid aliasing), then computing

Ė(k) = Re

{

ψ̂∗(k)Ĵ(k)

∆k2N4

}

(7)

Ż(k) = −Re

{

ζ̂ ∗(k)Ĵ(k)

∆k2N4

}

, (8)

and finally integrating over angle in spectral space to obtain Ė(k) andŻ(k). Here the superscript∗ indi-
cates a complex conjugate,k = |k|, N is the grid resolution (512 in our example),∆k is the wavenumber
interval in spectral space, and the factor∆k2N4 arises from the normalization of the Fourier transforms.
Second, thêζ andψ̂ data are truncated to retain only those spectral componentswith k < kT for some
truncation wavenumberkT , and the calculation of the spectral energy and enstrophy tendencies is re-
peated to giveĖT(k) and ŻT(k). Finally, the contribution mediated by wavenumbers greater than or
equal tokT is given by

ĖSG(k) = Ė(k)− ĖT(k), (9)

ŻSG(k) = Ż(k)− ŻT(k). (10)

Figure3shows the results of this calculation for three different truncation wavenumbers:kT = 48, 96, 144.
The threeŻSGplots show that the truncated scales remove enstrophy fromk< kT and transfer it tok> kT .
The scales from which enstrophy is removed are strongly localized close tokT . The magnitude of the
signal decreases askT increases, but the qualitative picture remains unchanged.

The threeĖSG plots show that the truncated scales also remove energy fromwavenumbers close to, but
smaller than,kT . However, they also transfer energy to large scales, to those wavenumbers that are
already most energetic. This is the signal of energy backscatter. Again, the magnitude of the signal
decreases askT increases, but the qualitative picture remains unchanged.

We have found this signal to be very robust. Repeating the calculation at other time instants produces
almost identical plots to those shown. A qualitatively similar picture is seen even for rather idealized
flows that are far from fully developed turbulence.

These results provide a reference solution against which tocompare explicit or implicit subgrid models.
Ideally, the subgrid model for a numerical solution with maximum resolved wavenumberkT should be
able to reproducėESG andŻSG for the samekT .

5 Effects on enstrophy and energy spectra of unresolved scales: explicit
and implicit subgrid models

This section compares a number of explicit and implicit subgrid models against the reference solution
found in section4 in terms of their spectral energy and enstrophy transfers. In each case the data are
truncated to wavenumberkT before the chosen scheme is applied. For this comparisonkT = 96.

Figure4 shows the spectral energy and enstrophy tendencies due to simple, explicit∇4 and∇8 hyperdif-
fusion subgrid models. A∇4 subgrid model removes enstrophy predominantly from large wavenumbers,
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Figure 3: Spectral tendencies of energyĖSG(k) (left) and enstrophẏZSG(k) (right) mediated by
wavenumbers greater than or equal to kT . Top: kT = 48; middle kT = 96; bottom: kT = 144. Note
the different axis scales for the different values of kT .
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Figure 4: Top:ĖSG(k) andŻSG(k) for kT = 96 (same as the middle row of Fig.3). Middle: ĖSG(k)
andŻSG(k) for a ∇4 subgrid model. Bottom:̇ESG(k) andŻSG(k) for a ∇8 subgrid model.

but is much less scale-selective than the reference solution. This is even more conspicuous in terms of
spectral energy tendency, which is almost flat for wavenumbers greater than about 10. Importantly, en-
ergy is removed at all wavenumbers; there is no representation of the backscatter. A∇8 subgrid model
is more scale-selective, but still significantly less so than the reference solution. Again, there is no
representation of backscatter.

UTOPIA (Leonard et al. 1993) is a quasi-third-order upwind flux-form advection scheme (it becomes
third order when the advecting velocity is constant). It hasinherent scale-selective dissipation, and is
therefore the type of scheme that might be suitable for ILES.It may be used with a flux limiter (Thuburn
1996) to prevent overshoots and undershoots. Figure5 shows an estimate of the effect of truncation
errors on the spectral energy and enstrophy tendencies whenUTOPIA is used for advection of vorticity.
The estimate is obtained by using the Jacobian implied by UTOPIA in (7) and (8) to obtainĖU , ŻU , then
subtractingĖT andŻT , which are computed using the spectral scheme (which has no spatial truncation
errors for the resolved scales).

The results show that UTOPIA’s truncation errors do indeed remove enstrophy near the truncation limit,
though it is not as scale selective as the reference solution. However, it also gives large enstrophy trans-
fers at small wavenumbers, with both sources and sinks. The large enstrophy sources and sinks imply
extremely large energy sources and sinks; they are two orders of magnitude larger than the reference
solution backscatter signal. The inclusion of a flux limitermakes negligible difference to the results.

We speculate that the large energy sources and sinks at low wavenumber arise as follows. The high
accuracy of the UTOPIA advection scheme is obtained througha cancellation of leading truncation
errors in the numerical fluxes when their divergence is calculated. Because UTOPIA is an upwind
scheme, there is a ‘jump’ in the stencil used to compute the fluxes at locations where one of the velocity
components changes sign, at these locations the cancellation of leading truncation error no longer occurs
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Figure 5: Top:ĖSG(k) andŻSG(k) for kT = 96 (same as the middle row of Fig.3). Middle: ĖSG(k)
andŻSG(k) for the truncation errors of the UTOPIA scheme. Bottom:ĖSG(k) andŻSG(k) for the
truncation errors of the flux-limited UTOPIA scheme.

and the accuracy is significantly reduced. Thus, the flow domain is criss-crossed by zones of relatively
large error, and this pattern projects significantly onto low wavenumbers.

The Anticipated Potential Vorticity Method (APVM, Sadourny and Basdevant 1985) was proposed as a
scheme for dissipating enstrophy while conserving energy in hydrostatic primitive equation atmospheric
models. It takes the form of a modification to the Coriolis term in the momentum equation. When
applied to the barotropic vorticity equation the scheme is

∂v
∂ t

+(ζ −D)k̂+ ∇
(

p+
v2

2

)

= 0, (11)

wherek̂ is the unit vertical vector andp is the pressure, or in terms of the vorticity equation itself,

∂ζ
∂ t

+ ∇.(vζ ) = ∇.(vD). (12)

Here,D = θL (v.∇ζ ) for some positive definite linear operatorL and suitable tunable parameterθ .
We consider two possibilities proposed by Sadourny and Basdevant (1985):L = 1 implying

Ż = −θ
∫

(v.∇ζ )2 dA, (13)

andL = −∇2 implying

Ż = −θ
∫

(∇(v.∇ζ ))2 dA. (14)

All terms are calculated using the spectral method.
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Figure 6: Top:ĖSG(k) andŻSG(k) for kT = 96 (same as the middle row of Fig.3). Middle: ĖSG(k)
andŻSG(k) for theL = 1 APVM. scheme. Bottom:̇ESG(k) andŻSG(k) for theL = −∇2 APVM.

Figure6 shows the spectral energy and enstrophy tendencies due to the APVM subgrid model∇.(vD).
For theL = 1 version of the scheme, there is indeed a net removal of enstrophy while the total energy
is conserved. Consistent with this, there is a net upscale transfer of energy; however, this transfer is
fairly local in wavenumber space, in contrast to the reference solution in which the energy transfer
is very nonlocal. Although there is some preference for enstrophy removal to occur at the smallest
scales, it is significant across most of the spectrum. Moreover, when the coefficientθ is tuned so that
the peak energy source is comparable to the reference solution (as here), the enstrophy removal is much
smaller than for the reference solution. TheL =−∇2 version of the scheme again gives a net enstrophy
sink while conserving energy, but the spectral distribution of sources and sinks is very erratic and very
different from reference solution.

6 Conclusions

There is evidence that numerical models of the atmosphere dissipate too much energy in the free atmo-
sphere, and this can lead to insufficient variability and underdispersive ensembles.

Using the barotropic vorticity equation as a model problem,we have examined the contribution to spec-
tral energy and enstrophy tendencies due to subgrid scales,first by direct calculation using a high-
resolution reference solution, then for several explicit and implicit subgrid models. The direct calcula-
tion shows a distinct and robust signal: enstrophy and energy are removed from scales very close to the
truncation scale, and energy is transferred to those scalesthat are already most energetic.

All of the subgrid modes tested are able to remove enstrophy predominantly from the smallest resolved
scales, though none are as scale-selective as the referencesolution. None of the subgrid models tested
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is able to capture a realistic energy backscatter signal. The L = 1 version of APVM does provide an
upscale energy transfer, but this is too local in wavenumberspace. The other schemes either remove
energy across too wide a range of scales, or produce large andunrealistic energy transfers at small
wavenumbers.

The tendency of typical subgrid models to remove energy across too wide a range of scales is likely
to be related to the excessive disspation reported in atmospheric models. The effect is systematic and
deterministic, suggesting that adeterministicscheme to restore the missing energy might be appropri-
ate. Kent (2009) tested a simple scheme for the barotropic vorticity equation, targeting energy input at
intermediate wavenumbers; he was able to improve the energybudget and found a small but measurable
improvement in the accuracy of the vorticity solution. Targeting energy input at small wavenumbers
was less successful, implying that it is more important to repair the excessive numerical dissipation at
intermediate scales than to capture the physical backscatter to large scales.
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