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ABSTRACT

This article uses radiation parameterization as a lens through which to view some general issues related to the
representation of model error and uncertainty. I describe the kinds of radiation calculations required by forecasting
models and consider the error sources and budgets for clear and cloudy skies. This demonstrates that, with respect
to radiation, process understanding is high, benchmarks unambiguous, and uncertainty due almost entirely to
limited knowledge available to the radiative transfer parameterization. I identify thee areas that may be ripe for
representing uncertainty though the perturbations that can be expected are small. Still, some relevant lessons for
stochastic parameterization and model uncertainty have arisen by accident from experience with two stochastic
radiation parameterizations developed to reduce model error, not to represent uncertainty. Most importantly,
experience has shown that perturbations introduced at the smallest temporal and spatial scales do not affect model
evolution or spread/skill relationships in ensembles. These lessons have implications for the development of
physically-based estimates of uncertainty.

1 Radiation as a problem in parameterization

1.1 Context

Electromagnetic radiation is the fundamental source of energy for all atmospheric motions.The equation
describing the transfer of monochromatic (at a single frequency or wavelength) radiation through the
atmosphere is fundamental, in that it can be derived from Maxwell’s equations (Mishchenko, 2008), and
is remarkably simple and unambiguous. The equation can be solved given boundary conditions and the
spatial distribution of optical properties (extinctionσ , phase functionP, and single scattering parameter
ω0) and temperature (for computing blackbody emission). Thisdistribution need only be known down
to resolutions of a few hundred meters in cloudy skies and kilometer scales in clear skies since radiation
smooths over variations smaller than this.

Weather forecasting models have fairly specific needs from aradiation transfer parameterization: heat-
ing rates in the the interior of the atmosphere and surface fluxes to compute the surface temperature
evolution - that is, profiles of broadband fluxes.Broadbandmeans that fluxes are integrated over the en-
tire electromagnetic spectrum andfluxes(sometimes called irradiances) that only hemispheric averages
of the radiation field are necessary. For the purposes of thisarticle I’ll assert that the present state-of-
the-art for this problem is to use correlated-k distributions1 (Lacis and Oinas, 1991; Fu, 1992) to do the

1Gas optical properties vary by orders of magnitude over verynarrow wavelength intervals;k-distributions re-order the
integration so it is smoother and requires many fewer quadrature points.
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spectral integration and some two-stream approximation (e.g. Meador and Weaver, 1980) to the one-
dimensional radiative transfer equation to compute fluxes.Radiation is often treated as two distinct
calculations, one for the shortwave (wavelengthλ less than about 3.7µm, dominated by the multiple
scattering of sunlight) and one for the longwave (λ longer than about 3.7µm, dominated by emission
and absorption of radiation from the earth and atmosphere).The approximation of the 3D radiative
transfer equation by a 1D version is the first significant approximation; a second common simplification
is to ignore scattering in the longwave calculation.

Radiation is unique among physical processes because it crucial to the long-term evolution of the atmo-
sphere but normally pretty unimportant to the short-term behavior. Radiative heating/cooling rates are,
in most circumstances, quite small relative to other terms.Radiation affects temperatures (and hence
the atmospheric flow) when it acts steadily over a long time: think, for example, of the slow clear-sky
cooling that drives subsidence in the subtropics, or the cloud-top radiative cooling in the boundary-layer
clouds at the base of this subsidence. One practical consequence is that radiative parameterizations are
frequently invoked less frequently than other physical parameterizations in atmospheric models.

The representation of radiation in dynamical models, then,is a relatively pure exercise in trading com-
putational cost for accuracy. This is very different from the parameterization of, say, convection, which
relies on far more abstract and empirical theories, and means that model error due to the radiation pa-
rameterization are primarily associated with limitationsin the problem description (i.e. the inputs) rather
then any uncertainty about the response of the system to a given set of conditions. Nonetheless, expe-
rience with radiation in atmospheric models offers some useful insight on the larger question of how to
represent model error and uncertainty.

1.2 Clear-sky error budgets

Clear skies are not transparent; radiation still interactswith both gases and aerosol particles. But clear
skies are optically homogeneous in the horizontal, both because the concentration of aerosols and gases
varies slowly with location and because the “radiative smoothing scale“ (Marshak et al., 1995) is large
because the extinction is small. This means that the most fundamental assumptions made by radiation
parameterizations – one-dimensional radiative transfer in a homogeneous medium – are good approxi-
mations in clear skies. Errors in radiative fluxes might arise from

• Knowledge of the underlying spectroscopy: how absorption by gases depends on gas amounts,
temperature, pressure, etc.

• Angular discretization: the computation of fluxes using a small number (typically two) of quadra-
ture points in polar angle.

• Spectral discretization: any errors introduced by approximating a line-by-line solution with a
correlated-k sum.

• Other approximations including the neglect of scattering in the longwave .

The US Department of Energy’s Atmospheric Radiation Measurement Program has made efforts to
assess the size of these errors using “radiative closure” studies in which carefully-calibrated observa-
tions of surface radiation are compared calculations made using a carefully-observed atmosphere (see
http://www.arm.gov/data/eval/24). Eli Mlawer is involved in this effort; he suggests that
uncertainty due to spectroscopy causes a flux uncertainty ofabout 1 W/m2, spectral discretization in
well-tuned parameterizations about 1.5 W/m2. Errors in the comparison with observations, in fact, are
dominated by uncertainty in the characterization of the temperature and humidity structure of the at-
mosphere and the ability to measure broadband fluxes (Mlawer, personal communication, 2011). These
errors are tiny in the context of global-mean surface radiation fluxes of 240 W/m2.
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1.3 Cloudy-sky error budgets

Error budgets for radiation parameterizations in cloudy skies are dominated by a single factor: the vari-
ability of cloud properties at scales below the filter scale of the model. This variability has two sources.
One, usually called “cloud overlap,” arises because a profile of cloud fraction and in-cloud optical prop-
erties implies a distribution of cloud configurations (i.e.combinations of cloudy and clear layers) within
a model column. The number of combinations can, in principle, be quite large (n partially-cloud lay-
ers implies 2n possible configurations) but is also influenced by “overlap assumptions” prescribing the
correlation structure among layers.

Clouds in nature also exhibit variability in integrated properties relevant to radiation calculations (optical
thickness, liquid water path) across a wide range of scales (Cahalan and Snider, 1989). This variability
is almost uniformly neglected by global models. Methods to account for this variability have been
proposed (see Sec.3.1) but the more common path is to use the variability to justifythe “tuning” of
cloud physical properties in the computation of optical properties (see Sec.2.1).

Calculations using cloud structures produced by fine-scalemodels (Barker et al., 2003) suggest that
horizontal and vertical structure have comparable impactson the radiative fluxes within domains about
the size of global models.

2 Stochastic radiation algorithms in dynamical models

One approach to dealing with model error is to acknowledge that the tendencies produced by the physical
parameterizations are themselves uncertain and to perturbthem in some systematic fashion, either by
perturbing the total tendency or by targeting specific processes. In this context it’s useful to look at two
stochastic radiation parameterizations even though thoseparameterizations were developed to reduce
model error rather than represent it explicitly.

2.1 Sampling subgrid-scale variability

As I pointed out in Section1.3error budgets for radiation calculations in cloudy skies are dominated by
the treatment of sub-grid-scale variability in cloud properties. A decade ago there were essentially three
ways to treat horizontal variability:

• Analytic closure in which some particular variant of the two-stream approximation is integrated
over some particular distributions of optical thickness2 τ (Barker, 1996). This can be extended to
treat multiple layers (Oreopoulos and Barker, 1999) but is inflexible.

• Rescaling of the optical properties used in the radiative transfer equation based on a description
of the inhomogeneity of the medium (Cairns et al., 2000; Petty, 2002). These methods are not
generally applicable to the kinds of variability present inthe atmosphere.

• “Tuning” i.e. the ad-hoc reduction of optical thickness by some (normally fixed) factor, sometimes
but not always justified on physical grounds (e.gCahalan et al., 1994; Tiedtke, 1996). This has no
physical basis. Nonetheless, most models today still treatthis factor as a free tuning parameter.

and two ways to treat “cloud overlap”

2Optical thicknessτ is the vertical integral of extinctionσ ; in cloudsτ varies slowly with wavelength (which is why clouds
are white).
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• Analytically, by computing clear- and cloudy-sky fluxes andcombining them in some way. A vari-
ety of such methods existed; all of them were incorrect when compared to benchmark simulations
(Barker et al., 2003).

• Enumeration: performing radiative transfer calculationson each possible configuration within
each grid cell and averaging the results (suggested byMorcrette and Fouquart(1986) and imple-
mented byStubenrauch et al.(1997) andCollins (2001).) This benchmark calculation is accurate
but very expensive, since the number of possible configurations increases rapidly with the number
of model layers.

The first stochastic radiative transfer parameterization in widespread use was aimed at finding a prac-
tical, uniform way to represent variability in cloud optical properties arising from vertical and/or hor-
izontal variability. The Monte Carlo Independent Column Approximation (McICA, seePincus et al.,
2003) adopted the idea of sampling randomly from the distribution of possible configurations originally
developed for diagnostic studies (Klein and Jakob, 1999). The domain-averaged broadband fluxF for a
single column with uniform optical properties is a sum overG spectral quadrature pointsg:

F(x,y, t) =
G

∑
g

wgFg(x,y, t). (1)

If sub-grid-scale variability is represented with a set ofS randomly-chosen samples, the domain-mean
flux is the linear average of the flux computed independently in each sample:

F(x,y,T) =
S

∑
s

G

∑
g

wgFg(x,y,T). (2)

This calculation is quite expensive becauseG ∼ 100 so that even a small value ofS imply thousands
of individual radiation computations. McICA subverts thisproblem by settingS= G and randomly
associated each sample of the configuration space with a different quadrature point in thek-distribution,

F(x,y,T) ≈
G

∑
g

wgFg(s
′

g;x,y,T) (3)

with this association chosen randomly at each point in time and space.

McICA is stochastic because of the random association between g ands so that any given realization
of Eq. 3 contains (unbiased) noise relative to Eq.2 (though even the latter is not guaranteed to sample
the distribution of possible cloud states). This noise depends on the number of sample points and on
how complicated a distribution of states is implied by a model’s climatology of cloud macrophysical
properties but is normally modest: tests in one model (Pincus et al., 2006), for example, put the noise
in surface fluxes atO(10 W/m2) and noise in heating rates at a few percent for individual calculations.
Noise of this magnitude does not affect the evolution of global models (Barker et al., 2008).

2.2 Sampling spectra in time

This noise introduced by McICA is limited because Eq.3 samples the entire spectrum but experience
with that algorithm suggested that dynamical models might be resilient in the face of grid-scale noise.
This success inspired a more radical approach. In a cloud-scale model in which the cells are small
enough that sub-grid-scale variability can be neglected, the ideal calculation is the one that captures the
temporal evolution at every location in the domain, i.e. forevery value ofx,y andt. Recall from Sec.
1.1, though, that radiation is so computationally expensive that it is normally computed less frequently
than most other physical processes in models of the atmosphere, i.e it is computed at discrete timesT.
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Choosing too large a radiation time stepT/t can excite numerical instabilities (Pauluis and Emanuel,
2004), while choosing too small a value risks making the calculation needlessly expensive. Monte Carlo
Spectral Integration (MCSI, seePincus and Stevens, 2009) trades the spectrally dense, temporally sparse
calculation for one which is dense in time but spectrally sparse:

F(x,y, t) ≈
G

G̃

G̃

∑
g

wgFg(x,y, t) (4)

with G̃< G and the set of quadrature points used is chosen independently at each location and time step.

MCSI was originally implemented in large-eddy simulationsof turbulent marine boundary layers in
which even an approximation as drastic asG̃ = 1 does not affect model evolution. Analytic insight
from this simple system (Pincus and Stevens, 2009) explains this result: the noise introduced by MCSI
depends on spatial and temporal scale. The noise is large at the smallest scales (where it diffuses away
quickly) but small at resolved scales relative to the energyfrom other sources.

2.3 Two lessons from stochastic radiation parameterizations

McICA (Sec. 2.1) and MCSI (Sec.2.2) are conceptually similar: they are approximate algorithms
aimed at replacing well-posed but computationally prohibitive calculations with affordable approximate
calculations that introduce random but unbiased noise in any given realization. They are designed to
reducemodel error by providing approximate solutions to the full problem (i.e. broadband calcula-
tions fully resolved in time that completely sample internal variability) rather than exact solutions to
some approximate problem. This is fundamentally differentfrom stochastic algorithms intended torep-
resentmodel error (e.gBuizza et al., 1999), parameterization uncertainty (e.g.Tompkins and Berner,
2008; Teixeira and Reynolds, 2008), or uncertainty due to the discrete nature of a physical process
(Plant and Craig, 2008; Eckermann, 2011). This distinction reflects the fact that radiation is very well
understood, and that uncertainty in radiative fluxes is almost entirely due to uncertainty about the optical
properties of the atmosphere used in the calculation.

McCIA and MCSI “work” in the sense that neither approximation affects model forecasts systemati-
cally (though this is not universally true for MCSI). In other words,unbiased random noise introduced
at the grid scale has no effect on the distribution of model forecasts.This implies that ensembles using
stochastic algorithms in which the noise is applied at the grid-scale will not be any broader than unper-
turbed ensembles. With one counter-example (Teixeira and Reynolds, 2008) I believe this has reflects
the community’s experience with stochastic scheme. It alsoexplains why perturbations to physical ten-
dencies (e.gBuizza et al., 1999) or to the circulation (Berner et al., 2009) must be correlated in space
and time in order to broaden ensembles, even if there is little or no theoretical justification for those
correlations. This point seems relevant to any stochastic treatment of model error or uncertainty.

3 Opportunities

I’ve argued so far the there radiation is such a well-understood process that there is very little room to
represent error or uncertainty in this aspect of atmospheric models. In fairness, that’s almost strictly true
only once the problem is fully specified in terms of the distribution of optical properties, and one can
argue that developing this specification from the model state is also part of the radiation parameterization
process. In this section I’ll briefly describe three places where there may be room for representing error
or uncertainty in radiation calculations in global models:two outstanding issues with developing the
problem specification and one bedrock issue regarding the problem we choose to solve.
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3.1 Sub-grid-scale variability

Radiative fluxes (and so heating rates) depend non-linearlyon the atmosphere’s optical thicknessτ . In
clear skiesτ varies slowly with location but clouds exhibit significant spatial variability across scales.
The combination of variability and non-linearity means that the mean albedo of a domain containing
clouds will always be less than the albedo implied by the domain-mean optical thickness (Cahalan et al.,
1994). (This problem is more relevant in the shortwave than in thelongwave since most clouds in the
atmosphere are opaque in the infrared.) The amount of variability depends on the size of the domain;
for domains of a few hundred km (the nominal grid size of climate models a decade ago) the bias
can be several percent (Pincus et al., 1999; Oreopoulos and Davies, 1998). This explains why almost
every global model “tunes” the optical thickness of clouds by reducing the liquid water content used in
computingτ by some arbitrary factor (see Sec.2.1).

Unresolved spatial variability affects other nonlinear processes, and particularly the formation of precip-
itation, in a similar way (Pincus and Klein, 2000; Rotstayn, 2000; Larson et al., 2001). This has sparked
some interest in the use of cloud schemes that explicitly predict the probability distribution function of
cloud properties within each grid cell. Assumed-PDF schemes (so called because the distribution family
is normally assumed and the parameters of the distribution predicted) have been used to represent vari-
ability in boundary-layer cloudiness for several decades (Mellor, 1977; Sommeria and Deardorff, 1977).
Several general versions of these schemes have been proposed for use in global models (Ricard and Royer,
1993; Tompkins, 2002; Golaz et al., 2002) but this idea has never really taken off: I’m not aware of any
global model that routinely uses an assumed-PDF scheme. That’s a bit of a shame, since even diagnosing
a PDF of cloud condensate from (independently-predicted) cloud fraction and cloud water content and
treating this variability in radiation calculations can eliminate the need for tuning (Pincus et al., 2006).
I expect that there’s still some low-hanging fruit down thisline of thinking.

3.2 Ice optics

One-dimensional radiative transfer calculations requireprofiles of the atmosphere’s optical properties
(σ ,P, andω0; see Sec.1.1). These optical properties must be computed from the atmosphere’s phys-
ical properties, i.e. temperature, liquid and ice water contents, aerosol loading, etc. The conversion is
more-or-less straightforward with one dramatic exception: ice clouds. Cloud ice is problematic because
the single scattering properties of particles depend on theparticle’s habit (shape) and density, and the
properties of the medium must integrate over all particles.(Cloud drops are easier because they are
round. Aerosol optical properties also depend on shape and chemical composition but their size limits
their impact on the overall radiation budget.) Developers of radiation parameterizations are still strug-
gling with finding appropriate geometric measures of particle habit with which to predict ice optical
properties (e.g.Fu, 2007). Even the available observations can be ambiguous: the cloud probes used to
obtain images of ice crystal habits do not resolve the smallest particles, and uncertainty in the shapes
of these particles can lead to uncertainty in asymmetry parameterg (the first moment ofP, and the one
relevant for flux calculations) of∼ 20% (Um and McFarquhar, 2011); this corresponds to uncertainty in
albedo of∼ 5%.

Global models are a long way from predicting these details: current state-of-the-art microphysics schemes
(e.g.Morrison and Gettelman, 2008) predict only the bulk properties (total mass and total number) of
the ice distribution. Habit and density information are entirely missing. Thus it wouldn’t be unreason-
able to use observations and off-line radiative transfer calculations to estimate distributions of ice cloud
optical properties based on model predictors. It may also beuseful to introduce some local memory,
since particle habits systematically as the ice ages.
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3.3 Three-dimensional radiative transfer effects

The very first simplification made in radiation parameterizations for atmospheric models is the replace-
ment of the three-dimensional radiative transfer equationwith a one-dimensional version that allows
for structure only in the vertical. Differences between these approximations are most important in the
shortwave where multiple scattering can act, and in cloudy skies in which significant variability exists.
Three-dimensional radiative transfer exhibits richer behavior than the 1D analog, even in overcast skies,
including “smoothing” (the net transport of radiation fromdense to tenuous portions of the medium, see
Marshak et al., 1995) when the sun is high and “roughening” caused by the shadowing from variable
cloud tops when the sun is low (Welch and Wielicki, 1984). In broken clouds the illumination of cloud
sides increases reflection when the sun is low (Pincus et al., 2005).

This physics is clearly missing from radiation parameterizations in global models; what is less clear
is how important this omission is. Computing three-dimensional radiative transfer is enormously ex-
pensive and the few experiments that have coupled cloud-scale models to three-dimensional radiative
transfer solvers have either seen no effect on cloud evolution (Mechem et al., 2008) or have failed to
demonstrate that small observed effects are statisticallysignificant (Cole et al., 2005). To me this seems
like evidence that the local heating rate anomalies produced by the one-dimensional approximation are
neither large enough nor persist for long enough to affect the flow (Pincus and Stevens, 2009, c.f. Sec.
2.2). There is evidence that very simple treatments, primarilyfirst-order corrections for the shadowing
of the direct solar beam (Várnai and Davies, 1999), may have some influence on near-surface tempera-
tures (Wapler and Mayer, 2008; Frame et al., 2009) and it might be possible to represent these effects at
coarser scales.

But even if three-dimensional radiative transfer effects turn out to be important in some set of circum-
stances it is not at all clear how to include them in global models. These effects depend on the two-point
statistics of the cloud field – how the clouds are arranged (correlated) in space – at the sub-grid-scale.
Global models do not typically produce even one-point statistics at this scale (Sec.3.1). In this context,
the only way to treat 3D effects is to developad hocestimates of cloud structure and use this struc-
ture to modify the 1D radiation calculations in some approximate way. Though the one-dimensional
approximation certainly introduces error and uncertaintyinto radiation calculations, it’s hard to see the
advantage of inventing spatial structure just so it can be used to make a small perturbation to the radiation
calculation.

4 Radiation and model uncertainty

One of the themes of this workshop was the quest to establish amore physical basis for treatments
of model error and uncertainty than inflating parameterization tendencies or spinning the circulation
up. But the talks we saw made clear that no one solution applies to every process or parameterization.
Radiation is at one extreme in that our understanding of thisprocess is deep, the errors in a well-posed
problem are small, and parameterization accuracy can be objectively assessed (see, as one example,
Collins et al., 2006). This suggests that that we should seek to represent uncertainty and error in the
problem inputs (e.g. Sec.3.2) rather than in the process itself. One specific implicationis that varying
the radiative transfer parameterization in “multi-physics” ensembles (e.g.Berner et al., 2010) is poorly
founded, and certainly does not represent uncertainty.

Experience with two stochastic radiation algorithms (Sec.2) is consistent with other experiences in
introducing stochastic elements to parameterization tendencies: any reasonable amount of fully random
(i.e. uncorrelated in space and time) noise does not projectonto the flow. In particular, grid-scale noise
neither changes the mean model trajectory nor the variance of an ensemble. The practical implication is
that stochastic perturbations are only effective at improving spread/skill relationships within ensembles
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if they are applied with spatial and temporal patterns (Buizza et al., 1999; Berner et al., 2009). Recon-
ciling this requirement with efforts to assign a more physical basis to parameterization uncertainty will
require moving away from a column-by-column view of parameterization. This arises naturally for pro-
cesses in which parameterization statistics apply over large areas and can be sampled at smaller scales
(Plant and Craig, 2008) but will require deeper thinking in other circumstances.
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