
ECMWF Workshop on Model Uncertainty, 20 – 24 June 2011 1 

Towards the Probabilistic Earth-System Simulator:  
A Vision for the Future of Climate and Weather Prediction1 

T.N.Palmer 

Atmospheric, Oceanic and Planetary Physics, University of Oxford 
European Centre for Medium-Range Weather Forecasts, Reading 

 

“You can thank your lucky stars that you are not economists. Those poor souls don’t even know 
their equations!” Sir John Mason, Director-General Meteorological Office, to his 1977 graduate 
intake.“I believe that the ultimate climate models will be stochastic, ie random numbers will 
appear somewhere in the time derivatives” Lorenz (1975). 

 

Abstract 

There is no more challenging problem in computational science than that of estimating, as accurately as science 
and technology allows, the future evolution of Earth’s climate; nor indeed is there a problem whose solution has 
such importance and urgency. Historically, the simulation tools needed to predict climate have been developed, 
somewhat independently, at a number of weather and climate institutes around the world. Whilst these 
simulators are individually deterministic, it is often said that the resulting diversity provides a useful 
quantification of uncertainty in global or regional predictions. However, this notion is not well founded 
theoretically and corresponding “multi-simulator” estimates of uncertainty can be prone to systemic failure.  
Separate to this, individual institutes are now facing considerable challenges finding the increased human and 
computational resources needed to develop more accurate weather and climate simulators with higher resolution 
and full Earth system complexity. A new approach, originally designed to improve reliability in ensemble-based 
numerical weather prediction, is introduced to help solve these two rather different problems. Using stochastic 
mathematics, this approach recognises uncertainty explicitly in the parametrised representation of unresolved 
climatic processes. Stochastic parametrisation is shown to be more consistent with the underlying equations of 
motion, and moreover provide more skilful estimates of uncertainty when compared with estimates from 
traditional multi-simulator ensembles, on timescales where verification data exists. Stochastic parametrisation 
can also help reduce long-term biases which have bedevilled numerical simulations of climate from the earliest 
days to the present.  As a result, it is suggested that the need to maintain a large “gene pool” of quasi-
independent deterministic simulators may be obviated by the development of probabilistic Earth-system 
simulators. Consistent with the conclusions of the World Summit on Climate Modelling, this in turn implies that 
individual institutes will be able to pool human and computational resources in developing future-generation 
simulators, thus benefitting from economies of scale; the establishment of the Airbus consortium provides a 
useful analogy here.  As a further stimulus for such evolution, discussion is given to a potential new synergy 
between the development of stochastic dynamical cores, and stochastic processing hardware. However, it is 
concluded that the traditional challenge in numerical weather prediction, of reducing deterministic measures of 
forecast error, may increasingly become an obstacle to the seamless development of probabilistic weather and 
climate simulators, paradoxical as that may appear at first sight.  Indeed, going further, it is argued that it may be 
time to consider focussing operational weather forecast development entirely on high-resolution ensemble 
prediction systems. Finally, by considering the exceptionally challenging problem of quantifying cloud feedback 
in climate change, it is argued that the development of the probabilistic Earth-system simulator may actually 
provide a route to reducing uncertainty in climate prediction.  

  

                                                      
1 Submitted to Quart.J.R. Meteorol. Soc: October 2011 
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1. Introduction 
The problem of understanding and predicting climate is fundamentally a scientific one, but with 
extraordinary relevance for society. However, our understanding and ability to predict climate is still 
rudimentary. For example, due to profound uncertainties, primarily with the hydrological cycle, we are 
still unable to rule out the possibility that anthropogenic climate change will either be catastrophic for 
humanity over the coming century, or something to which we can adapt relatively easily. Hence, 
whilst climate policy on mitigation or adaptation is rightly based on risk assessment, the risks cover a 
very broad range of potential outcomes, presenting a barrier to clear-cut policy and decision making. 
How well do we understand these uncertainties? Are they irreducible? Could the climate science 
community do better in reducing uncertainty? Key conclusions of this paper are that whilst there 
indeed are irreducible uncertainties in predicting climate, and our understanding of these uncertainties 
is poor, new techniques promise not only to improve our ability to quantify climate prediction 
uncertainties more reliably, these techniques may actually help reduce uncertainty.  

To take this further, the analysis presented in this paper suggests that development of new scientific 
tools to quantify more reliably, uncertainty in predictions of climate change, have implications for the 
way in which weather and climate institutes are themselves organised, both internally, and with 
respect to one another. For example, it is often argued that the existence of a substantial “gene pool” of 

quasi-independent climate simulators2 not only allows an assessment of uncertainty in climate 

predictions (through the internal standard deviation of the corresponding multi-simulator ensembles), 
it also engenders a spirit of competition between institutes thereby fostering creativity. Whilst these 
arguments have merits, there are counterarguments to be discussed in this paper: firstly that multi-
simulator ensembles are prone to systemic failure due to shortcomings in the basic numerical ansatz 
used to formulate all contemporary simulators, and secondly that the limited human and computational 
resources available at the institutional level are major obstacles to the development of more accurate 
climate simulators.  

The new scientific element introduced into this discussion hinges on a developing programme to 
reformulate stochastically our weather and climate prediction simulators, which, it is claimed, 
provides a more rigorous approach to the representation of simulator uncertainty, thereby undermining 
the inherent value of maintaining a “gene pool” of quasi-independent, individually deterministic, 
prediction tools. This “stochastic” programme has emerged from the numerical weather prediction 
(NWP) community, and its relevance to the climate problem can be seen as exemplifying the 
“seamless prediction” philosophy (Palmer and Webster, 1993; WCRP, 2005; Slingo and Palmer, 
2011) whereby the insights and constraints of NWP are brought to the climate table.  

                                                      
2 Throughout this paper, the word “simulator” is used instead of the more conventional word “model” (cf 
Goldstein and Rougier, 2004). Within the weather and climate community, this may irritate some readers. 
However, the reason for the change is as follows.   For the public and many policy makers too, use of the word  
“model” has a tendency to conjure up a picture of a child’s toy.  Some so-called climate “sceptics” take 
advantage of this word association in portraying climate models merely as glorified computer games, and not as 
the sophisticated mathematical representations of basic laws of physics, that they are. When communicating with 
the public, we have a tendency to use our own jargon, often subconsciously; hence we use the word “model” in 
public, because that’s what we use amongst ourselves, unaware of these pejorative word associations. Perhaps 
using the word “simulator” will engender more respect for these numerical representations. Modern commercial 
pilots are trained almost exclusively on simulators; that apparently does not deter the public from flying. (If 
instead the pilots were trained merely on “models” perhaps the public would be deterred!) As such, it may be 
time to start using the word “simulator” in place of “model”, even within scientific discourse.   
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The outline of the paper is as follows.  Section 2, in trying to provide an underlying rationale for the 
discussions in this paper, presents the author’s perspective on why improving our ability to estimate 
reliably the evolution of Earth’s climate over the coming century, continues to be both important and 
urgent.  In Section 3, a number of reasons are given as to why incremental developments in the status 
quo for climate simulation science, may not be able to provide the needed improvements in coming 
years. Section 4 discusses a programme to reformulate our comprehensive weather and climate 
simulators stochastically. Results are presented indicating how ensembles based on a single simulator 
with stochastic representations of simulator uncertainty, can outperform the more conventional multi-
simulator approach to uncertainty. Discussion of the need to integrate this stochastic approach into 
programmes of basic simulator development are discussed in Section 5, using standard arguments 
familiar in other areas of physics such as quantum field theory and solid state physics. Section 6 
discusses, briefly, a potential synergy between the development of probabilistic weather and climate 
simulators, and an emerging computer hardware design where bit-reproducibility is sacrificed in order 
to improve the energy efficiency of next generation processors. Section 7 presents an analysis of one 
obstacle to progress: it is suggested that one of the key strategic goals of contemporary NWP centres, 
that of reducing deterministic forecast error, may be becoming increasingly incompatible with the 
realisation of the types of proposals outlined in Section 5. Going further it is suggested that it may be 
time to stop production of a separate deterministic weather forecast, and to focus entirely on the 
development of probabilistic prediction systems – this may require some evolution of practices in 
weather forecast offices too. Section 8 presents a vision for the development of future generation 
probabilistic weather and climate simulators, using the establishment of the successful Airbus 
consortium as an analogy. It is argued, focussing on the thorny issue of cloud feedback in climate 
change prediction, that the development of the probabilistic Earth-system simulator may actually help 
reduce uncertainty in the magnitude (and indeed sign) of this feedback. Conclusions are given in 
Section 9.  

A key aspect of this paper is that it provides new scientific arguments to support the conclusions of the 
World Summit on Climate Modelling (Shukla et al, 2010) that the community worldwide should be 
evolving towards a small number of seamless Earth-system simulators, possibly based the major 
geopolitical groupings. Each simulator would be developed using human and computational resources 
pooled across many climate and weather institutes. Critically, it is argued here that each of these 
simulators must be explicitly probabilistic.  

The author hopes that the paper will be of interest to a range of readers, from those actively working 
on the development of climate and weather simulators, to those more interested in organisational 
issues. To these latter groups, in case their technical knowledge is “rusty”, please skip over the 
technical parts of the paper; this should not be an obstacle to understanding later parts of the paper.   

Regarding the quotes at the beginning of the paper, the author was very lucky to be one of Sir John 
Mason’s new graduate intake in 1977, and has enjoyed the most marvellous career as a result, at the 
Met Office, at the European Centre for Medium-Range Weather Forecasts, and now at Oxford 
University. The author agrees with Sir John’s quote at the beginning of the paper, but only up to a 
point! And the point, as with so many other points of foundational importance on prediction and 
predictability, was first made by Ed Lorenz, with whom the author has had the honour to interact 
during Ed’s many visits to ECMWF.  
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2. Why development of reliable Earth-system simulators continues 
to be so important 

There are three key reasons why the programme to develop reliable climate simulators continues to be 
so important. Firstly, they are the primary source of information for informing global policy on 
climate mitigation – how much do emissions need to be cut, worldwide, to keep climate within “safe” 
bounds? Secondly they provide information to help enable society to adapt to changing climate, and 
more generally to become less vulnerable to climate, present or future. Finally, in lieu of adequate 
emissions reductions, climate simulators provide information to help assess whether to embark on 
some form of active climate geoengineering, eg reducing solar fluxes by spraying sulphate aerosols in 
the middle atmosphere, without risking unforeseen consequences.  

Perhaps current estimates of future climate are sufficient to meet these needs. However, a few simple 
arguments indicate this is unlikely. For example, there are, as yet, no binding agreements from the 
governments of the world for substantial emissions cuts. The reasons are not difficult to understand: 
economic growth is seen as a crucial measure of success for many politicians, and some construe 
climate mitigation as a major obstacle to economic growth. The fact that current climate projections 
are so uncertain is seen by some as providing grounds for being very cautious about embarking on 
substantial climate mitigation. On the other hand, at the upper end of the projections, 22nd Century 
climate may well be catastrophic for humanity, with largely irreversible changes in comparable in 
magnitude with differences between the depths of the last ice age and today. If we are indeed heading 
for this end of the projection spectrum, with all the human suffering that will ensue, failure to cut 
emissions because of concerns about year-on-year economic growth will, in retrospect, seem 
remarkably short sighted.  

It is frustrating, to the layperson, the politician, and indeed to scientists engaged on climate change 
research, that we still cannot rule out more categorically either end of this spectrum of possibilities. 
However, the fact of the matter is actually worse than this: as discussed in Section 3 we do not even 
know how reliable our quantification of uncertainty actually is; for particular variables, in particular 
regions, are IPCC estimates overconfident, or under confident? 

However, as discussed in this paper, opportunities exist both to quantify more reliably, and indeed to 
reduce, the substantial uncertainties that exist in current estimates of future climate. Not only could the 
opportunities be realised at a cost that is a minute fraction of the cost to the economy of mitigation, it 
is possible they could be realised at virtually no extra cost, by making use of “economies of scale”.  

As well as strengthening the science input to mitigation policy, better quantification and reduction of 
uncertainties in estimates of future climate will also benefit decision making for climate adaptation. 
For adaptation, the requirements, superficially at least, seem even more challenging, since it will be 
necessary to have accurate predictions of the statistics of weather variables at the regional-specific 

scale3. Currently, many institutes around the world are gearing up to be able to provide “climate 

services” to a range of customers requiring detailed information over the coming few decades. 
However, current datasets designed to aid decision making for climate adaptation have substantial 
shortcomings, eg in estimating the change in the frequency of drought associated with development of 

                                                      
3 Although will be argued in Section 8, in relation to cloud and aerosol feedbacks,  that changes in global climate 
are themselves the integrated product of changes in regional-scale circulation changes and hence may be no 
easier to predict reliably than the regional changes themselves.  
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persistent blocking anticyclones (http://ukclimateprojections.defra.gov.uk/). As discussed further in 
Section 3, it has to be questioned whether the climate community is currently able to provide society 
with reliable climate-service information on multi-decadal timescales.  

More generally, improved short-term weather and climate simulators will also be important for 
reducing society’s vulnerability to present and future climate. For example, there is good evidence to 
suggest useful levels of seasonal-timescale predictability exist, at least in the tropics. Being able to 
exploit this potential predictability reliably will be important: if individual countries become exposed 
to more extreme climate variations under climate change, then having warning of specific seasons 
where the weather is likely to be especially extreme, will help reduce society’s vulnerability to such 
extremes. Indeed, the development of more reliable systems to predict instances of severe weather on 
timescales of a few days ahead, should also be seen as crucial in reducing society’s vulnerability to the 
environment, and hence an important part of a nation’s climate adaptation programme. However, as 
discussed in Section 3, we are not yet able to exploit seasonal predictability due to unreliability in our 
seasonal forecast simulators.  

Over and above these issues, the need to reduce uncertainty is a sine qua non for climate 
geoengineering where currently science can say little of a genuinely reliable nature about the impact of 
solar-reduction schemes eg on regional precipitation fields; hence the potential for unintended 
consequences in geoengineering is substantial.  

Finally, it should be mentioned that climate simulators are becoming increasingly crucial in making 
best use of past observations, in order to reconstruct, for example, the climate of the 20th Century. 
Currently, there is considerable uncertainty about historical variations in humidity and rainfall. The 
most reliable reconstructions of past climate will blend raw observational data, which are necessarily 
incomplete and inaccurate, with constraints implied by the laws of physics, as encoded in our weather 
and climate simulators. The reanalysis datasets (eg Kalnay et al, 1996; Uppala et al, 2005) combine 
observations and simulator constraints using the statistically optimal strategies of operational data 
assimilation. Improved simulators with more accurate estimates of simulator uncertainty, a key topic 
of the current paper, will enable more reliable reanalysis estimates of past climate to be given, 
especially for aspects of climate linked to the hydrological cycle.  

3. A critique of the traditional deterministic weather and  
climate simulator 

3.1. The gene pool of “ab initio” climate simulators 

Arrhenius (1896) developed the first mathematical simulator to quantify the effects of anthropogenic 
climate change. Based on the notion of energy balance in one dimension, the simulator incorporated 
both the direct greenhouse effect from increased carbon dioxide, and the positive amplifying effect of 
water vapour, the latter through an assumption that as the atmosphere warms, its relative humidity will 
remain constant.  

The development of “ab initio” climate simulators, where notions such as constant relative humidity 
are predicted rather than assumed, began with the work of Phillips (1956), who was able to adapt the 
simulators emerging in the rapidly developing field of numerical weather prediction, using them to 
simulate climate. The first projections of anthropogenic climate change using such ab initio climate 
simulators were given by Manabe and Wetherald (1975).  



PALMER, T.N.: TOWARDS THE PROBABILISTIC EARTH-SYSTEM SIMULATOR 

6 ECMWF Workshop on Model Uncertainty, 20 – 24 June 2011 

Over the years, a diversity of ab initio climate simulators has been produced, as individual institutes 
around the world sought to replicate and extend the work of these pioneers. This diversity (sometimes 
referred to as a “gene pool”) is often seen as a virtue. By not putting “all our eggs in one basket”, the 
diversity of predictions provides an estimate of prediction uncertainty. For example, results in the 
latest IPCC AR4 assessment report (Solomon et al, 2007) are based on a pool of coordinated 
projections made by some 24 climate simulators developed in different climate institutes (CMIP3: 
Meehl et al, 2007). A similar set is currently being made for the IPCC Fifth Assessment Report.  

In addition, the development of such a diversity of simulators engenders a degree of rivalry and 
competition between institutes which many consider necessary to foster creativity. For example, there 
is considerable kudos for the institute whose climate simulator is perceived by the community as 
“being the best”. Having a “world leading” climate simulator is often considered a matter of national 
and institutional pride.  

Maintaining such a diversity means there are relatively few opportunities to pool resources 
internationally, and thus to benefit from “economies of scale” when trying to improve these 
simulators. Hence, funding needed to improve an Earth-system simulator must largely be found at the 
national level. Hence even if the investment needed to make climate projections as reliable as possible 
is small compared with the global costs of mitigation and adaptation, the investment may indeed be 
significant compared with other national funding priorities, especially in (these) times of economic 
difficulty.  

Hence one is therefore forced to ask two questions: Notwithstanding the benefits discussed above, is 
this institutional-based framework unquestionably a good thing, and are the merits of the “gene pool” 
incontrovertible? If not, is there an alternative?  

3.2. Determinism, Parametrisation and Scaling Symmetry 

All climate simulators used in CMIP3 (and indeed CMIP5) have inherited a basic feature from early 
NWP code: determinism. At one level, this is hardly surprising: the underlying partial differential 
equations on which the simulators are based (eg the Navier-Stokes equations) are deterministic. 
However, the assumption of determinism in the computational code implies that representations of 
unresolved processes in such simulators are deterministic. For example, in his recent essay on the need 
for improved parametrisation in atmospheric simulators, Jakob (2010) notes that, despite 
computational advances, many important processes in the atmosphere remain unresolved, and that as a 
result “it is therefore necessary to represent those subgrid-scale processes as a function of the grid-
scale variables.” In mathematics, a function associates one quantity, the argument, with another 
quantity, the value, in the sense that exactly one value is associated with each argument. This 
characterises perfectly the conventional approach to parametrisation: the grid-scale variables 
determine precisely the grid-box tendency associated with the sub-grid processes.  

The basis for determinism appears superficially solid: unlike those poor economists, we know our 
equations at the level of partial differential equations, therefore in principle we should know them at 
the computational level too, at least at sufficiently high resolution. On top of this, improvements in 
deterministic parametrisations have increased the realism of comprehensive climate simulators 
enormously since the early days of Manabe and Wetherald, and this increase in realism has also lead 
to substantial gains in conventional deterministic skill in weather prediction (Simmons and 
Hollingsworth, 2002). However, is the argument for determinism unassailable, and is it possible that 
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the assumption of determinism at the computational level is holding back progress in the development 
of climate and weather simulators? 

Let us start by going back to basics. Although the atmosphere is a compressible multi-phase fluid, and 
indeed a considerable part of its complexity arises from this, consider for simplicity an incompressible 
homogeneous fluid for which the Navier-Stokes equations can be written: 

 	ρ ቀడ௨
డ௧
 .ݑ uቁ ൌ െ   (3.1) 	ݑଶߤ

where u is fluid velocity, p pressure, ߩ density and µ viscosity. These ab initio equations are solved 

numerically by truncating the equations using some finite grid, or other finite (eg spherical harmonic) 

basis. If we write ݑሺݔ, ሻݐ ൌ ,ݔതሺݑ ሻݐ  ,ݔᇱሺݑ  ሻ where the overbar denotes projection onto the grid, thenݐ
the “Reynolds Averaged” form for the Navier Stokes equations above can be written (schematically) 
as: 

ߩ  ቀడ௨
ഥ

డ௧
 .തݑ uതቁ ൌ െ̅  തݑଶߤ   ܧ

The effect of unresolved sub-grid processes on the resolved scales are represented by the quadratic 

“Reynolds’ stresses” ܧ whose components are given by 

ܧ ൌ െρ୨൫uనᇱuᇱതതതതത൯ 

Jakob’s definition of parametrisation, applied to these Reynolds’ stress, follows a long tradition in 
fluid dynamics, including luminaries such as Boussinesq, Prantl, Smagorinsky (and many others), in 
trying to close the Reynolds-average equation by representing E as a deterministic function of the 
resolved scale variables: 

ܧ ൌ ܲሺݑത;  ሻߙ

and where α denotes a number of “exogenous” parameters determined, in principle at least, by 
observations and/or theory. 

However, a key symmetry of equation (3.1) is associated with scale invariance: if ݑሺݔ, ,ሻݐ ,ݔሺ  ሻ is aݐ

solution to the Navier Stokes equations, so also is  

,ݔఛሺݑ ሻݐ ൌ ߬ିଵ/ଶݑ ൬
ݔ
߬ଵ/ଶ

,
ݐ
߬
൰				ఛሺݔ, ሻݐ ൌ ߬ିଵ ൬

ݔ
߬ଵ/ଶ

,
ݐ
߬
൰ 

for any ߬  0 (Majda and Bertozzi, 2001). 

The existence of such scaling symmetries in the underlying equations is consistent with observations 
of power-law structure in the atmosphere. Fig 1 reproduces the celebrated paper of Nastrom and Gage 
(1985) showing an observational analysis of atmospheric kinetic energy as a function of horizontal 

scale (shown in terms of some horizontal wavenumber ݇). This analysis draws attention to two 

separate power-law slopes, a “-3” slope at large scales and a “-5/3” slope” at smaller scales. The 
truncation scale of all weather forecast simulators, and a number of contemporary climate simulators, 
lies within the “-5/3” range. Broadly speaking, it appears that the “-3” slope is indicative of quasi-two-
dimensional flow dominated by rotation, whilst the “-5/3” slope is indicative of three-dimensional 
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flow with substantial divergent motion (enhanced by latent heat release in cloud systems, associated 
with the compressible multi-phase nature of the atmosphere).  

 

Figure 1: Variance power spectra of wind and potential temperature based on aircraft 
observations. The spectra of meridional wind and temperature are shifted by one and two decades 
to the right, respectively. Lines with slopes -3 and -5/3 are entered at the same relative 
coordinates for each variable, for comparison. From Nastrom and Gage (1985). 

 

Figure 2: Estimate of the parameter b in the estimated energy spectrum ∝ ݊ି from December-
February 250hPa wind, where n is total wavenumber based on 13 month Athena integrations 
(Kinter et al, 2011) of the ECMWF simulator integrated at various resolutions. Solid line T511. 
Dashed line T1279. Dotted line T2047. Note that the T511 simulator never has a “-5/3” spectrum, 
and that all simulators necessarily produced overly steep spectra at small scales indicative of 
excessive energy dissipation (from Straus, 2011).  
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As first clearly pointed out by Schertzer and Lovejoy (1993), the “deterministic 
truncation/parametrisation ansatz” outlined above, is inconsistent with the existence of scaling 
symmetries and associated power-law behaviour – for the simple reason that such power laws preclude 
any meaningful separation between “resolved” and “unresolved” scales, and hence between “resolved” 
and “unresolved” processes.  

This inconsistency can be seen explicitly in Fig 2 (from Straus, 2011) which shows the slope of the 
power spectrum diagnosed (at months 2-4, corresponding to boreal winter) from an ensemble of 13-
month integrations of the European Centre for Medium-Range Weather Forecasts (ECMWF) 
atmosphere-only simulator run at different spectral resolutions. Specifically, Fig 2 shows estimates of 

the exponent b for a spectrum ݊ି , where n is total horizontal wavenumber, for three different 

spectral resolutions). These integrations were performed as part of the Athena project (Kinter et al, 
2011; Jung et al, 2011). Results show that, even though the truncation scale of the T511 simulator (c. 
40km) lies within the range in which observed atmospheric variability has a “-5/3” spectrum, the 
effects of the truncation/parametrisation ansatz prevent such a spectrum being simulated. Although the 
higher resolution simulators (T1279 and T2047) have a hint of this shallower spectral slope, all three 
simulators inevitably produce an unrealistically steep spectral slope (and hence an inability to maintain 
the shallow power law) consistent with excessive energy dissipation, for wavenumbers within the -5/3 
range. (The apparent decrease in slope near the very high-wavenumber end of the spectrum is likely to 
be a numerical artifact due to aliasing associated with the use of a linear grid in performing spectral 
transforms in the simulator; Nils Wedi, personal communication.) 

Although the development of deterministic parametrisations (amongst other things) have contributed 
demonstrably to improved deterministic weather forecast skill scores over past decades, there is 
evidence that because of the scaling issues discussed above, contemporary climate simulators cannot 
be said to be capable of representing Earth’s climate with satisfactory realism. For example, in the 
IPCC AR4 it is concluded (Solomon et al, 2007; Chapter 8): 

 “…models still show significant errors. Although these are generally greater at smaller scales, 
important large-scale problems also remain. ……The ultimate source of most such errors is that many 
important small-scale processes cannot be represented explicitly in models, and so must be included in 
approximate form as they interact with larger-scale features.  …consequently models continue to 
display a substantial range of global temperature change in response to specified greenhouse gas 
forcing.” 

Perhaps one could argue that with fine-enough simulator resolution (eg T2047, much higher than any 
contemporary climate simulator), large-scale errors associated with any violation of power-law 
behavior can be made arbitrarily small. A simple scaling argument (Leith, 1973, see also Palmer, 

2001) indicates that this is not a reliable conclusion. Let ܧሺ݇ሻ denote atmospheric kinetic energy per 

unit wavenumber, at wavenumber ݇. We can define a timescale ߬ሺ݇ሻ in terms of a length divided by a 

velocity ie ߬ሺ݇ሻ~݇ି
య
మିܧ

భ
మሺ݇ሻ. Let us suppose ߬ሺ݇ሻ characterises the time it takes errors at wavenumber 

݇ to grow and infect nonlinearly the accuracy of simulations at wavenumber ݇/2. As above, suppose 

we are only interested in large-scale aspects of the flow, ie wavenumbers less than some ݇. We can 

ask how long it will take before truncation errors at large wavenumbers 2ே݇	ܰ ≫ 1 will affect large-
scale simulations of the flow. An estimate of this is given by: 

 Ωሺܰሻ ൌ ߬ሺ2ே݇ሻ  ߬ሺ2ேିଵ݇)+…	߬ሺ2݇ሻ ൌ ∑ ߬ሺ2݇ሻே
ୀ  
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Now if ܧሺ݇ሻ~݇ିଷ then ߬ሺ݇ሻ is independent of ݇ and Ωሺܰሻ diverges as ܰ → ∞. This suggests that if 
the atmosphere was quasi two-dimensional all the way down to very small scales, errors at small 
scales can be “shielded” from the large scales, by increasing the simulator resolution sufficiently. 

However, if ܧሺ݇ሻ~݇ିହ/ଷ then ߬ሺ݇ሻ~݇ିଶ/ଷ and Ωሺܰሻ~2.7߬ሺ݇ሻ. That is to say, with a -5/3 power 

law, the series Ωሺܰሻ converges to a value less than three “eddy turn-over times” associated with 

wavenumber ݇, as ܰ → ∞. Hence, with a “-5/3” power law, it may be impossible to shield the large 

scales from truncation-scale errors, by increasing sufficiently the resolution of the simulator. This 
analysis is consistent with the more detailed study of Lorenz (1969), see also the more robust analysis 
of Rotunno and Snyder (2008) using the surface quasi-geostrophic equations, but has not been proven 
rigorously from the underlying 3D Navier Stokes equations. (It is not literally true in the limit where 

2ே݇~݇ and ݇	lies in the viscous range of scales; however, it appears to be an open question 

asymptotically in the range ݇ ≪ 2ே݇ ≪ ݇.) 

Now there are very good reasons for attempting to increase the resolution of atmospheric simulators as 
much as possible. Firstly, the higher a simulator’s resolution, the better Earth’s topography and 
land/sea boundary can be represented well. Secondly, high resolution ensures that Rossby wave 
breaking, important for the maintenance of blocking anticyclones and other nonlinear weather-regime 
phenomena (see Section 8), can be simulated properly. Thirdly, the higher resolution, the better the 
simulator can utilise high-resolution observations, eg from satellite instruments with small pixel size. 
Finally, at some stage, high-resolution simulators will be capable of representing the key atmospheric 
phenomenon of deep convection (which, along with baroclinic instability, can be considered one of the 
core dynamical modes of atmospheric instability and hence variability). Similar arguments apply to 
the oceans too. In addition to these theoretical considerations, regional predictions of climate change, 
particularly for precipitation change, have been shown to be sensitive to changes in resolution, 
horizontal and vertical (Matsueda and Palmer, 2011; Scaife et al, 2011).  

However, a practical consequence of the analysis above is that as the truncation scale of a climate 
simulator moves into “-5/3” range, the effects of the inconsistency of using deterministic 
parametrisation cannot necessarily be reduced to zero by increasing resolution sufficiently (building a 
comprehensive climate simulator whose truncation scale lies in the viscous range is utterly 
impracticable in the foreseeable future). By this, it is not to be inferred that the effect of 
misrepresenting the small scales will damage the larger scales continuously in time; that very 
pessimistic scenario is inconsistent with the fact that conventional weather prediction simulators can, 

from time to time at least, predict large scales very accurately, well beyond the limit Ωሺܰሻ~2.7߬ሺ݇ሻ. 
Rather, if the scaling argument is right, the rapid upscale error propagation associated with the “-5/3” 
spectrum will occur intermittently. This raises the fundamental question: How can we ensure that the 
advantages of integrating simulators at higher and higher resolution will not be somehow be destroyed 
by this rapid intermittent upscale propagation of error?  

As suggested by the IPCC WG1 quote above, contemporary simulators may have common failings 
due the universal use of the deterministic truncation/parametrisation ansatz. This implies that multi-
simulator ensembles may be blind to the consequences of such systemic failings, so that ensemble 
agreement cannot be taken as a reliable measure of forecast confidence. Is there any evidence for this?  

There is evidence from the poorness of the “attributes curve” in reliability diagrams (Wilks 2006) 
from seasonal forecasts of regional precipitation based on DEMETER multi-simulator ensembles 
(Palmer et al, 2008). An attributes curve can assess whether, for a particular forecast event E, forecast 
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probabilities of E are well calibrated against observed frequencies of E – the technical definition of 
“reliability”. The attributes curve for a reliable forecast system should lie on the diagonal. Fig 3 shows 
an update of such seasonal-forecast reliability diagrams but based on the more recent ENSEMBLES 
multi-simulator ensemble (Weisheimer et al, 2009). Fig 3 shows examples (for seasonal-mean Sahel 
and North European rainfall) where the flatness of the attributes curves indicates that the ensemble is 
extremely overconfident and hence highly unreliable. The origin of such unreliability arises, most 
likely, from an inadequate representation of simulator error in the multi-simulator ensemble, arising in 
part from the presence of large but common biases in the individual simulators.  

 

 
Figure 3: Seasonal forecast reliability diagrams for the ENSEMBLES multi-simulator ensemble. 
Based on 1980-2001 hindcasts initialised on May 1st and for forecast period June-August. a) 
seasonal mean NINO3 sea surface temperature above upper climatological tercile. b) seasonal 
mean precipitation anomalies in Amazon Basin in lower climatological tercile. c) as b) but for 
Northern Europe. d) as b) but for Sahel.  

 

As discussed in Palmer et al (2008), much of the unreliability of seasonal forecasts arises from 
difficulties which climate simulators have in simulating the statistics of weather regimes (Straus et al, 
2007). For example, ability to simulate anticyclonic blocking accurately is a well-known problem 
amongst low-resolution climate simulators. However, recent results from the Athena project (Kinter et 
al, 2011; Jung et al, 2011) suggest even at higher resolutions, climate simulators may have difficulty 
replicating the multi-modal probability distributions of regional weather regimes (Andrew Dawson, 
personal communication 2011) even though such multi-modality is highly significant when diagnosed 
from reanalysis datasets. As discussed in Section 8, it is suggested that an ability to simulate regional 
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weather regimes accurately will be key to reducing uncertainty in the cloud feedback problem for 
predicting global climate change.  

In a recent paper, Doblas-Reyes et al (2011) concluded that the dominance of simulator bias in state-
of-the-art coupled ocean-atmosphere simulators is a major impediment to the investigation of decadal 
timescale predictability, in particular in assessing whether useful decadal predictions can be made, 
given our current ability to observe the sub-surface ocean. Two key points can be made here. Firstly, 
one of the goals of the emerging programme of “climate services”, that of providing reliable near-term 
climate forecast information to a range of customers, is not likely to be met by current-generation 
simulators. Secondly, the value of investment in ocean (and other) observations is not being fully 
realised because of simulator bias. This in turn raises the following point. There have been many 
discussions in the community about the relative importance of funding Earth observations, vis a vis 
climate simulator development. However, this is a false dichotomy: in truth, we will only realise the 
full value of investment in Earth observations, when climate and weather simulators are of sufficient 
quality to be able to ingest and utilise these observations fully (either in analysis/reanalysis mode, or in 
predictive mode). If the information content in an observation is being lost prematurely due to 
simulator bias, then the investment in producing this observation will not have been fully realised. 

Discussion of fundamental difficulties with the conventional deterministic truncation/parametrisation 
ansatz is not new. Lander and Hoskins (1997) argue that sophisticated and computationally expensive 
parametrisation schemes should only be applied to the more “believable” scales in a simulator, ie 
scales far removed from the truncation scale. They propose that simpler parametrisation schemes 
could be used on the “unbelievable” scales near the truncation scale. This idea has some resonance 
with the proposal discussed in Section 6, for a new synergy between climate simulator software and 
probabilistic hardware whereby less-believable computations near the truncation scale could be 
executed on relatively fast energy-efficient probabilistic processors, leaving computations at the large 
“believable” scales for traditional energy-intensive bit-reproducible processors.  

3.3. True diversity of the “gene pool” of climate simulators 

Given the problems above, consider the following question: just how diverse is our “gene pool” of 
climate simulators in any case? Many climate institutes use the same basic closures in their simulators’ 
parametrisations, indeed some share the same parametrisations. Estimating the effective size, Meff , of 
the CMIP3 multi-simulator ensemble has recently been studied by Pennell and Reichler (2011) who 
note that “for the full [CMIP3] 24-member ensemble, this leads to an Meff that…lies only between 7.5 
and 9.” They conclude: “The strong similarities in model error structures found in our study indicate a 
considerable lack of model diversity. It is reasonable to suspect that such model similarities translate 
into a limited range of climate change projections.”  

Hence, leaving aside the systemic problems discussed above, the effective size of the gene-pool is 
rather small: most of the institutional simulators whose integrations are submitted to CMIP, are 
relatively minor modifications of a small number of core simulators.  

There are techniques to expand ensemble size by perturbing the parameters ߙ within a given simulator, 

according to expert opinion about inherent uncertainty in fixing the values of these parameters 
(Murphy et al, 2004: Stainforth et al, 2005; see also Section 5 below). Whilst there is certainly merit in 
treating these parameters as uncertain, and representing this uncertainty in “perturbed-parameter” 
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ensembles, evidence to date suggests that adding perturbed-parameter integrations to a multi-simulator 
ensemble does not change Meff by much (Masson and Knutti, 2011). 

3.4. Climate complexity 

Notwithstanding the remarks above, there are two fundamental problems that all climate institutes 
acknowledge as obstacles to the development of accurate climate simulators: insufficient human 
resources and insufficient computing resources. These problems are especially acute in (current) 
economically challenged times.  

Since the days of Phillips, and Manabe and Wetherald, climate simulators have become more and 
more complex. In terms of parametrisations, the sub-grid representations for deep convection, clear-
sky and cloud radiative effects, sub-grid orography, boundary-layer turbulence, aerosols, cloud 
microphysics, and so on and so forth, have become immeasurably more sophisticated (and 
computationally demanding) since the early days. Moreover, what in the 1970s were essentially 
atmosphere-only simulators (eg with simple “slab” oceans and “bucket” land-surface hydrology) have 
in the 2010s become fully coupled simulators of the atmosphere, oceans, cryosphere and land surface 
with a range of biogeochemical processes (“Earth-system complexity”). The need to ensure that 
chemical tracers are properly represented during simulations, yet at the same time allowing the 
simulators to run efficiently on massively parallel computers, means that the numerics of the 
dynamical cores of weather and climate simulators have to be extremely sophisticated.  

Problems of algorithmic complexity do not stop there. For climate-service applications, shorter range 
decadal predictions require that simulators are initialised with contemporary observations, implying 
the need for sophisticated data assimilation schemes for the atmosphere, oceans and land surface.  

Finally the dynamical cores themselves are increasingly complex as quasi-geostrophic equations have 
given rise to the hydrostatic primitive equations, and now to the non-hydrostatic dynamical cores, 
needed to be able to probe kilometre truncation scales where deep convection is at least partially 
resolved. At these high resolutions, significant human resources need to be devoted to the problem of 
ensuring that numerical code can run efficiently over the very large numbers of processors of modern 
supercomputers (the scalability problem).  

Not surprisingly then, climate institutes struggle to find the human resources needed to develop these 
manifold elements.  

On top of this, the computational demands of a contemporary climate simulator means it is impossible 
for an institute to develop simulators both with full Earth-system complexity and with the resolution of 
a contemporary numerical weather prediction simulator, and at the same time run large ensemble 
integrations from states initialised with contemporary observations. This extremely important issue has 
been discussed at length elsewhere, being a key topic of the major World Summit on Climate 
Modelling (Shukla et al,2010; Palmer, 2011) and will not be repeated here. 

4. Stochastic Representation of Unresolved Processes  
Given the importance of climate prediction, the systemic shortcomings of the deterministic 
truncation/parametrisation ansatz, and constraints on available human and computational resources, is 
there an alternative strategy for simulator development, to incremental advances in the “status quo”?  
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As discussed above, there are fundamental problems with the conventional deterministic 
representation of sub-grid processes. Perhaps then, we might consider a generalisation of the definition 
of what we mean by “parametrisation” and frame it, not in terms of functional relationships, but in 
more probabilistic terms. Hence, let us define a sub-grid parametrisation of process P, as a constraint 
on some prior (eg climatological) probability distribution of tendency associated with P, based on 
contemporaneous values of grid-scale variables. An explicit example will be given below. This 
automatically suggests we treat the notion of parametrisation as an inherently probabilistic problem, to 
be tackled by explicitly stochastic techniques (Palmer, 2001).  

There is nothing new in the use of stochastic mathematics to describe climate simulators; the idea can 
be traced to Hasselman (1976) who developed a idealised coupled ocean-atmosphere simulator in 
which the entire atmosphere was represented by a simple Markov process. Using this simulator, 
Hasselman showed how ocean-atmosphere coupling would redden the spectrum of atmospheric 
variability. However, the use of stochastic mathematics in such earlier approaches, and the concept 
being explored here, are conceptually different: Hassleman’s simulator is (deliberately) a simplified 
idealised representation of climate, and the use of stochastic mathematics made the simulator 
equations mathematically tractable. Here, we are not interested in mathematical tractability per se, 
rather it is being argued that stochastic mathematics has an inherent role to play, in comprehensive ab 
initio weather and climate simulators, of the type that are used in operational weather prediction and in 
IPCC assessment reports, and which are utterly intractable using analytic mathematics, and hence 
require state of the art supercomputers.  

A key conceptual difference between deterministic and stochastic parametrisation is illustrated in Fig 
4. Whilst deterministic parametrisation represents the bulk-average effect of some putative large 
ensemble of sub-grid processes occurring on scales smaller than the grid scale, stochastic 
parametrisation attempts to represent actual realisations of the sub-grid flow when no scale separation 
necessarily exists. Fig 4 indicates that the stochastic parametrisations must necessarily impact directly 
on scales larger than the truncation scale. This is because, as discussed above, with power law 
behavior, uncertainty in sub-grid processes will propagate upscale by nonlinear dynamical effects 
(Thuburn et al, 2011). Hence part of the (stochastic) parametrisation process requires one to represent 
the effect of uncertainty in the sub-grid processes, on the resolved grid.  

To address these issues further, it is useful to consider a reasonably tractable example where we know 
precisely the “true” system, and which we will attempt to simulate using parametrised simulators, both 
deterministic and stochastic. Consider, then, by way of analogy, the set of linked nonlinear ordinary 
differential equations put forward by Lorenz (1996): 

 
 1 2 1

( 1) 1

kJ
k

k k k k j
j J k

dX hc
X X X X F Y

dt b  
  

      
 (4.1) 

 
 1 2 1 int[( 1)/ ] 1

j
j j j j j J

dY hc
cbY Y Y cY X

dt b        
 (4. 2) 

Here we will imagine the ܺ as representing the large, slow scales (analogous to wavenumbers  ݇) 

that we are interested in, and the ܻ as representing small fast scales (analagous	to	wavenumbers	 

2ே݇) that we wish to parametrise. The last term of the first equation couples the small scales to the 
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large scales; we will call this “the small-scale tendency”. Below we consider two values of the c 
parameter: c=10 and c=4; the h and b parameters are held fixed. When c=10, the Y variables typically 
evolve over substantially faster timescales than do the X variables, ie there is clear temporal scale 
separation between these variables. It will turn out that parametrising the small-scales 
deterministically will work reasonably well for this parameter setting. By contrast when c=4, this scale 
separation is weaker and the parametrisation problem becomes inherently less deterministic. By way 
of analogy, then, we use the values c=10 to mimic the relatively steep “-3” energy spectrum, and c=4 
to represent the relatively shallow “-5/3” energy spectrum of the real atmosphere.  

 

 
Figure 4a) Schematic of hypothetical situation where there is some scale separation between 
resolved and unresolved flow, justifying the notion of deterministic parametrisation . b) Schematic 
of the more realistic situation where there is no scale separation between resolved and unresolved 
flow, justifying the notion of stochastic parametrisation.  
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With the true system represented by equations (4.1) and (4.2), we now consider a simulator 

 1 2 1
k

k k k k k

dX
X X X X F P

dt        
 

ܲ ൌ ሺ1  ݎ
௨௧ሻ	 ܲ

ௗ௧ሺܺ; ሻߙ  ݎ
ௗௗ 

of the “true” Lorenz (1996) system, where the small-scale tendency is parametrised by the formulae ܲ 

(first discussed by Wilks, 2005). Here we have generalized the conventional deterministic formula 

ܲ ൌ ܲ
ௗ௧ሺܺ; ݎ ሻ using stochastic variablesߙ

ௗௗ and ݎ
௨௧.  

Fig 5 shows skill score results for a large number of initial-value ensemble predictions (Fig 5a) and 
one long climate integration (Fig 5b). Full details are given Arnold (2011). In the initial-value 
ensembles, evaluated at t=0.6 time units (perhaps equivalent to about 3 days for weather forecasting), 

the initial conditions ܺሺݐ ൌ 0ሻ are known perfectly, hence there is no initial uncertainty, only 

simulator uncertainty. The solid line denotes the results with c=10, the dashed line gives results with 
c=4. 

 

Figure 5a) Ranked Probability Skill Scores for 75 initial condition ensemble forecasts at t=0.6, 
based on differences between the Lorenz (1996) dynamical system and various parametrised 
versions of the system – see text for details - with c=10 (solid) and c=4 (dashed). b) Hellinger 
Distance between the climatological probability distribution of the Lorenz (1996) dynamical 
system and the various parametrised versions, with c=10 (solid) and c=4 (dashed). Based on 
integrations over 400 time units.  
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A number of parametrisations are considered: “Deterministic” denotes a deterministic parametrisation 

ݎ)
ௗௗ ൌ ݎ

௨௧ ൌ 0) based on fitting a cubic polynomial in ܺ to points in a scatter diagram of 

instantaneous small-scale tendency against ܺ; “White Additive” denotes a simple white-noise term 

added to the deterministic parametrisation ሺݎ
ௗௗ ് 0; ݎ

௨௧ ൌ 0ሻ; “Red Additive” denotes a red-noise 

AR1 process added to the deterministic parametrisation; “Multiplicative” denotes a red-noise AR1 

process multiplying the tendencies from the deterministic parametrisation ሺݎ
ௗௗ ൌ 0; ݎ

௨௧ ് 0ሻ. For 

the initial-value problem, we use the Ranked Probability Skill Score (RPSS: Wilks, 2006) to assess the 

probabilistic skill in forecasting ܺ. For the climate integrations, we use the Hellinger Distance 

(related to the more familiar Kolmogorov-Smirnov Distance; Pollard, 2002) between the “true” and 

simulated probability distribution of ܺ values. Note that the larger the RPSS, the more skilful the 

forecast, whereas the smaller the Hellinger Distance, the closer is the simulated probability 
distribution to the probability distribution of truth. Again, see Arnold et al (2011) for details.  

A number of interesting results can be concluded from Fig 5: 

1. As expected, the c=10 system is “easier” to parametrise than the c=4 system, and whilst 
stochastic parametrisation improves forecast skill for both values of c, the improvement is 
relatively small when c=10. By analogy, we would expect comprehensive weather simulators 
to be harder to parametrise deterministically, if their truncation scales probe the -5/3 part of 
the spectrum. As discussed above, there is an inherent tension (perhaps one would even say 
incompatibility) between high-resolution simulation and deterministic parametrisation. 

2. There is an overall strong correlation between simulator performance in initial value mode, 
and in climate mode, consistent with the philosophy underpinning the notion of seamless 
prediction.  

3. There is an overall advantage for the red noise parametrisation over the white noise 
parametrisation. This is consistent with the discussion above: in stochastic parametrisation, it 
is necessary to represent the means by which uncertainty in the representation of sub-grid 
processes affects the large-scale flow, on spatial scales larger than the simulator’s truncation 
scale, and on timescales longer than the simulator’s timestep. In Lorenz (1996), correlations 

between neighbouring ܺ variables are small, and, for this particular model, there isn’t much 

benefit to the introduction of “spatially-correlated” noise. However, as Fig 5 shows, there is 
benefit in representing “temporally-correlated” noise.  

4. There is an overall advantage for the multiplicative noise parametrisation. This multiplicative 
noise parametrisation is essentially that developed and tested in the ECMWF simulator by 
Buizza et al (1999).  

We can use this system to illustrate the utility of the probabilistic notion of parametrisation, as defined 
earlier in this section. Fig 6 shows (solid) the normalized unconstrained (ie climatological) probability 
distribution of the small-scale tendency term when c=4. On this figure is plotted the normalized 

probability distribution of this tendency when the ܺ variable is constrained to lie in െ6  ܺ  െ5 

(dotted) and 13  ܺ  14 (dashed). It can be seen that the constrained probability distributions are 

quite different from the climatological distribution. That is, knowing the large-scale variable is 
important in constraining the prior distribution. However, knowing the large-scale variable does not 
constrain the distribution so much it collapses to a Dirac delta function – which would be the case if 
deterministic parametrisation were accurate. (Corresponding deterministic hat functions are shown in 
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Fig 6 for c=4; they are considerably sharper than the constrained probability distribution. This is why 
deterministic parametrisation performs relatively poorly for this model.) Moreover, Fig 6 shows that 
the normalized probability distributions are sharper for small deterministic tendency than for large 
deterministic tendency; this is the reason why, in Fig 5, the multiplicative noise parametrisation is 
especially skilful.  

 

 
Figure 6: Realisations of the stochastic pattern generator used in the ECMWF Stochastically 
Perturbed Parametrisation Tendency scheme (Palmer et al, 2009). Solid (dotted) lines correspond 
to positive (negative) values.  

 

 

Figure 7: Probability distributions (with normalised area under the curve) of the tendency term in 
the (“large-scale”) X equations, due to the (“small scale”) Y variables in the Lorenz (1996) 
dynamical system with c=4. Solid line: prior climatological distribution. Dotted line: distribution 
conditioned on -6<X<-5. Dashed line: distribution conditioned on 13<X<14. The narrow “hat” 
functions give the tendencies, for -6<X<-5 and 13<X<14 respectively, based on the deterministic 
parametrisation. The fact that the distribution is broader when X is constrained to the larger 
values, than when constrained to the smaller values, provides some explanation for why the 
multiplicative noise parametrisation is more skilful in Fig5.  
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In the latest version of the ECMWF multiplicative-noise scheme (or SPPT: Stochastically Perturbed 
Parametrisation Tendency scheme, see Palmer et al; 2009), the parametrisation is given by 

Xሶ ୱ୲୭ୡ୦ ൌ ሺ1  ሻሶߤ௦ݎ Xሶ ୢୣ୲ 

where ሶܺ ௦௧ denotes the stochastic tendency, ሶܺ ௗ௧ the total deterministic tendency, ݎ௦ denotes a 

stochastic spectral pattern generator based on an uncorrelated series of red-noise processes, one for 
each spherical harmonic coefficient. The relative amplitude of these red noise processes in spectral 
space is such as to produce Gaussian correlations in physical space (see Fig 7). In the results discussed 
below, there are two sets of such red-noise processes: one with 6 hour decorrelation time, the other 

with smaller amplitude and 30-day decorrelation time (see Palmer et al, 2009 for details). Finally, ߤ is 

an ad hoc parameter which clips the stochastic tendencies in the stratosphere and in the boundary 

layer. We return to this "ߤ" parameter later.  

A more overt example of the need to consider the representation of sub-grid uncertainty on the 
resolved spatial scales arises in the stochastic backscatter scheme (Shutts, 2005; Berner et al, 2009) 

టܨ ൌ ൬
ܾோܦ௧௧
௧௧ܤ

൰
ଵ/ଶ

టܲ∗ 

Here the streamfunction forcing ܨந	is associated with an upscale energy transfer when, for example, 

divergent kinetic energy associated with deep convection is converted to rotational kinetic energy 

during mesoscale organization. This forcing is represented by a stochastic pattern generator టܲ (either 

the spectral generator, cf Fig 7, or an alternative cellular automaton – it can be noted in passing that 
cellular automata provide computationally cheap means to communicate information at the sub-grid 

level, between adjacent grid boxes). Here ܦ௧௧ denotes the diagnosed energy dissipation from the 

corresponding deterministic parametrisations, and ܤ௧௧ and ܾோ are parameters which ensure 

dimensional consistency, and degree of energy backscatter respectively.  

Fig 8 (from Palmer et al, 2009) shows the impact of SPPT on the probabilistic skill of medium-range 
forecasts of 850hPa temperature in the tropics using the ECMWF Ensemble Prediction System (EPS). 
The results are dramatic. Stochastic parametrisation has increased the level of skill by four days, from 
two days without representation of simulator uncertainty, to close to six days with stochastic 
representation. It is hard to imagine any parametrisation having such an effect on forecast skill.  

The introduction of stochastic parametrisation into the ECMWF simulator has fundamentally changed 
the skill of the EPS in more ways than one. Importantly, it has allowed the estimation of initial 
uncertainty to be made using ensembles of (4D Var) data assimilations (Isaksen et al, 2010). Until 
recently, EPS initial perturbations were made exclusively using singular vector analysis (eg Buizza 
and Palmer, 1995). The reason for this was that if an EPS was based solely on initial perturbations 
from ensembles of analyses, these perturbations had to be artificially inflated in order that EPS spread 
and skill matched in the medium range. Introduction of stochastic parametrisation into the data 
assimilation process (and the use of higher resolution and hence less damped simulators), has enabled 
ensemble data assimilation to be used to generate initial EPS perturbations. Fig 9 shows that EPS-
based probabilistic predictions of rainfall over Europe in the medium range are now extremely 
reliable.  

 



PALMER, T.N.: TOWARDS THE PROBABILISTIC EARTH-SYSTEM SIMULATOR 

20 ECMWF Workshop on Model Uncertainty, 20 – 24 June 2011 

 
Figure 8: Continuous Ranked Probability Skill Score for 850hPa temperature in the tropics based 
on the ECWMF Ensemble Prediction System with no representation of model uncertainty (dotted 
line); the original “stochastic physics” scheme of Buizza et al (1999) (dashed line); the 2-time 
Stochastically Perturbed Parametrisation Tendency scheme described in Palmer et al (2009) 
(solid line). See Palmer (2009) for details.  

 
 

Figure 9: Reliability diagram for the ECMWF Ensemble Prediction System at t=4 days for 
prediction of rainfall exceeding 1mm/day over the European domain, based on verification from 
March-May 2011. The values against the dots give the number of occasions where probability 
forecasts within a given 10% range (and at 0% exactly) were made.  
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There is no doubt that ensemble forecasts with stochastic parametrisation are skilful. But are they 
more skilful than forecasts using the more traditional multi-simulator concept? This question, applied 
to the climate prediction problem, lies at the heart of this paper. Table 1 shows a comparison of 
probabilistic skill on the monthly timescale (where copious verification data exists), based on three 
ensemble forecast systems (see Weisheimer et al, 2011 for details). The first system is the single-
simulator ECMWF seasonal ensemble forecast system with stochastic (SPPT and backscatter) 
parametrisation. The second system is a multi-simulator ensemble comprising the climate simulators 
that contributed to the ENSEMBLES multi-simulator ensemble (Weisheimer et al, 2009). The third 
ensemble is again based on the single-simulator ECMWF seasonal ensemble forecast system as above, 
but with no representation of simulator uncertainty at all (ie only initial uncertainty).  

 
 

Table 1: Brier Skill Scores for probabilistic predictions for all global land area 2m temperature 
and precipitation grid points, based on exceeding upper climatological tercile (warm/wet) and not 
exceeding lower tercile (cold/dry) events for: the ENSEMBLES multi-simulator ensemble (MSE), 
an ensemble using the ECMWF simulator with stochastic parametrisation (SPE) and an ensemble 
using the ECMWF simulator without any representation of simulator uncertainty. Bold figures 
indicate the system with the highest score. (From Weisheimer et al, 2011) 

Results show that for 7 of the 8 binary forecast events considered (based on climatological 
temperature and precipitation terciles over all land points), the single-simulator ensemble with 
stochastic parametrisation outperforms the multi-simulator ensemble. For one of the 8 events, the skill 
estimates for the stochastic parametrisation ensemble and the multi-simulator ensemble only differ by 
the third significant digit. Now it might be imagined that the key reason that the single-simulator 
stochastic-parametrisation ensemble outperforms the multi-simulator ensemble is that the former has 
been made with the world’s premier medium-range weather simulator. However, if we compare the 
skill of the multi-simulator ensemble with the skill of the same single-simulator ensemble, but without 
any representation of simulator uncertainty, then it can be seen from Table 1 that the latter is much the 
least skilful for all events considered.  

This indicates that the single-simulator stochastic parametrisation ensemble is indeed more skilful that 
the multi-simulator ensemble, but not because this particular simulator is somehow better (eg in terms 
of its deterministic forecast skilful) than the other simulators.  

In Weisheimer et al (2011), it was also shown that on longer seasonal timescales, stochastic 
parametrisation still has the edge against the multi-simulator ensemble for precipitation forecasts, but 
not for forecasts of surface temperature. This suggests (see Section 5 below) that development of the 
stochastic approach for the land surface and for the oceans is also likely to be required in the future.  



PALMER, T.N.: TOWARDS THE PROBABILISTIC EARTH-SYSTEM SIMULATOR 

22 ECMWF Workshop on Model Uncertainty, 20 – 24 June 2011 

The skill of a perturbed-parameter ensemble was also tested by Weisheimer et al (2011). The skill 
scores turned out to be poor, but one cannot rule out the possibility that this was because the simulator 
in which the parameters were perturbed was not state-of-the-art for monthly and seasonal prediction. 
Further tests are needed within, eg the ECMWF system, to evaluate the perturbed-parameter method. 
It is certainly not inconveivable that some combination of perturbed-parameter and stochastic 
parametrisation techniques may prove optimal. 

A key property of stochastic parametrisation is its ability to influence the mean state of the simulator, 
and hence reduce the mean bias of the simulator against observations. That is to say, the interaction of 
the imposed noise with the nonlinearity of the simulator can generate a “rectified” time-mean 
response. In this way, it is possible that stochastic parametrisation can help alleviate some of the 
systematic biases of climate simulators. Fig 10 shows an example of such alleviation (from Berner et 
al, 2011, who also show the impact of stochastic backscatter on the mean state of simulations in the 
tropics).  

 

 

Figure 10: Mean systematic error of 500 hPa geopotential height fields for extended boreal 
winters (December–March) of the period 1990-2005. Errors are defined with regard to the 
observed mean field (contours), consisting of a combination of ERA-40 (1990- 2001) and 
operational ECMWF analyses (2002-2005). Shown are the systematic error of experiments (a) 
low-resolution T95 simulator, (b) T95 simulator with stochastic kinetic-energy backscatter, (c) 
high-resolution T511simulator and (d) T95 simulator with improved deterministic 
parameterizations. (From Berner et al, 2011). 
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However, a crucial problem revealed by Fig 10 is that the impact of stochastic parametrisation on 
simulations of Northern Hemisphere circulation, is very similar to the impact of either increasing 
simulator resolution (ie modifying the dynamical core), or modifying the conventional deterministic 
parametrisation schemes. Dynamical reasons for this “degeneracy” are discussed in Palmer and 
Weisheimer (2011). These explain why improving the fidelity of climate simulators has been so 
difficult over the years, and why indeed it is very easy for a simulator code to contain many sets of 
“compensating errors”. This is a key reason why data assimilation can provide such a powerful tool 
for enabling simulator development whilst minimizing such compensating-error problems (see Palmer 
and Weisheimer, 2011 for discussion). This problem of degeneracy is discussed further in Section 5 
below.  

5. Stochastic parametrisation at the process level 
Despite these rather positive results, stochastic parametrisation is still at a rudimentary state of 
development: the stochastic parametrisation concept described above has only been applied to the 
atmospheric component of coupled simulators. There is clearly a need to extend the concept to the 
oceans, the land surface, the cryosphere and so on. The techniques which can be used to develop 
stochastic parametrisations are manifold, and the logic inductive rather than deductive. A technique of 
particular relevance is the type of coarse-grain analysis developed in Frederiksen and Kepert (2006) 
and Shutts and Palmer (2007). Moreover, the sort of experimental programmes advocated by Jakob 
(2010) are just as important for developing stochastic parametrisation as deterministic.  

However, even for the atmospheric component of climate simulators, there is a need for uncertainty to 
be incorporated in the development of parametrisation at the process level, rather than as a “bolt-on 
extra”. We focus on this for the rest of this Section.  

For example, in describing the multiplicative noise parametrisation in Section 4, reference was made 

to the ad hoc parameter ߤ which clipped the stochastic noise, both in the boundary layer and in the 

stratosphere. The parameter was introduced for plausible reasons, but also because it improved 
forecast scores. However, one should not introduce parameters purely because of empirical 
pragmatism: they must additionally have some basis in science. For the stratosphere, the scientific 
basis is not hard to find. Much of the diabatic heating in the stratosphere is associated with infra-red 
radiation emitted by carbon dioxide molecules. However, carbon dioxide molecules are well mixed in 
the atmosphere, there is little sub-grid variability. Hence there is little sense in representing this 
process stochastically. It is also conceivable, that, at least in sufficiently homogeneous terrain well 
away from orography, a typical boundary layer “eddy” associated with surface form drag, is also 
sufficiently small in scale that grid scale stochasticity in grid-scale vertical mixing will be relatively 

small. This argues that, instead of having an ad hoc ߤ parameter, aspects of stochastic parametrisation 

should be developed at the process level.  

The case for stochastic parametrisation at the process level is fairly clear when discussing processes 
like convection (eg Lin and Neelin, 2003; Plant and Craig, 2008), and imaginative new stochastic 
schemes for parametrising different convective cloud families are being developed using cellular 
automata (eg Bengtsson-Sedlar et al, 2011) or stochastic lattice models (common in solid-state 
physics) for the subgrid-scale dynamics (Khuider et al, 2003: Frenkel et al, 2011). However, even 
something as basic (and in principle well known) as radiation needs stochastic treatment; gridbox 
surface radiative fluxes can depend strongly on poorly resolved near-grid scale circulations. For 
example, under a region of stratocumulus, surface fluxes will depend strongly on whether in-cloud 
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shallow convection is of the closed cell or open cell type. It is unrealistic to expect these small-scale 
circulations to be deterministic functions of the large-scale variables; such effects therefore represent a 
source of uncertainty in forecasts of surface temperature that should be incorporated at the process 
level, into the simulator equations.  

However, there is a separate and quite fundamental argument for the need to develop stochastic 
parametrisation as an inherent part of simulator development, and not as a “bolt-on” extra. In Section 
4, it was shown that stochastic parametrisation had an impact on a simulator’s systematic error. 

Consider the implications of this for setting the parameters ߙ of the deterministic parametrisations 

ܲሺܺ,   .ሻߙ

Consider the parameter often called “convective entrainment” representing the strength of the process 
whereby environmental air is entrained laterally into convective plumes: for example, a small 
entrainment parameter will represent a situation where plumes are shielded from the environment, and 
the associated convective parametrisation scheme will operate over relatively deep layers in the 
simulator. It is well know that climate simulations are especially sensitive to the value of this 
parameter (Stainforth et al, 2005). However, if the notion of a sub-grid ensemble of convective plumes 
is not well founded, due to power-law structure and associated scale invariance, then neither is the 
existence of a well-defined value for the convective entrainment parameter. As such, and this is 
universally recognised by the scientists who develop climate simulators, the values of these parameters 
have to some extent to be “tuned” based on the fit of simulator output to sets of observations of the 
large-scale structure of the atmosphere (either based on weather forecasts or climate integrations).  

However, consider the implications of such tuning exercises if “bolt-on” stochastic parametrisations 

change the mean state of the simulator. It implies that optimally tuned values of the parameters ߙௗ௧ 
for a deterministic simulator will not be the same as the optimally tuned values of the same parameters 

 ௦௧ in a stochastic simulator. If stochastic closure schemes can represent the scale invariance of theߙ

underlying equations more accurately, then this implies that ߙௗ௧ are not in fact optimal at all.  

This situation is familiar in many other areas of physics. Consider the vertical motion of a table-tennis 

ball with mass ݉ inside water. As found by Green in the 19th Century, the motion of the ball obeys 

Newton’s law ܨ ൌ ݉ܽ where ܨ is the Archimidean buoyancy force, but where ݉ ൌ ݉ 2/ܯ and ܯ 

is the mass of water occupying the same volume as the table-tennis ball. Hence, whilst in the absence 

of the effect of randomly fluctuating molecules of water, the motion of the ball obeys ܨ ൌ ݉ܽ, in the 

presence of these random fluctuations, the motion of the table-tennis ball continues to be given by 
Newton’s law, but with inertial mass increased as if the ball were half full of water. This 
“renormalisation” of mass has measurable effects: the initial acceleration of the ball back towards the 
surface is about seven times smaller than it would otherwise be. Quantum field theorists recognise in 
these arguments the difference between the “bare” and “effective” properties of a particle such as an 
electron, in the presence of the fluctuating photonic field: the latter being the value of mass relevant 
when fitting theory to observations.  

In the same way, we argue here (as indeed was argued by Frederiksen and Davies, 1997; Frederisksen, 
1999) that parameter tuning for weather and climate simulators must be done in the presence of 
parametrised representations of the inherent stochasticity associated with the scale invariant properties 
of the underlying equations. The notion of “bolt-on” stochastic parametrisation (for use when the 
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simulator is run in ensemble mode) using deterministically pre-tuned parameter values, is not a 
scientifically sound procedure.  

It is important to emaphasise that none of the above implies that we mustn’t continue to develop, 
refine, improve and extend our subgrid parametrisations. This work remains as critical in the future as 
it has been in the past. However, it is argued here that this development, refinement, improvement and 
extension, should be performed within an inherently probabilistic, and hence stochastic, 
parametrisation framework. The author believes that this more general framework will allow 
innovative and hopefully constructive ideas to flourish.  

6. Stochastic dynamical cores and stochastic processors 
It was noted above that stochastic parametrisation inevitably involves the representation of the upscale 
propagation of subgrid uncertainty, onto the resolved grid. Doesn’t this imply that, just as it may be 
futile trying to develop precise deterministic parametrisations, so also it is futile to develop precise 
deterministic dynamical cores, especially for the evolution of scales near the truncation scale? 

Whilst this may be the case, if we have accounted statisically for upscale propagation of uncertainty in 
the parametrisation, then the only disadvantage to retaining a precise deterministic dynamical core, is 
the computational burden. But how would one go about defining a probabilistic dynamical core which 
is both consistent with the equations of motion, and would provide a significant reduction in 
computational cost compared with current deterministic cores? After all, computing a stochastic field 
which comprises large numbers of uncorrelated pseudo random-number generators is certainly not 
computationally cheap.  

However, there is an emerging technology that may present a way forward here, and at the same time 
provide a new type of synergy between software development (of the high-resolution probabilistic 
Earth-system simulator), and the very hardware needed to integrate a simulator’s equations. This 
technology (eg Palem, 2005) is motivated by the fact that a significant fraction of a computer’s energy 
consumption is associated with heat dissipation at the chip level. Hence, if the processors of a 
computer could be designed so that when the voltage across the individual transistors is reduced, the 
computer would operate with significantly reduced energy consumption, but at marginally reduced (eg 
99% instead of 100%) accuracy, this capability would certainly be worth exploiting. There is now a 
company offering probabilistic processing hardware (http://www.lyricsemiconductor.com/technology-
processor.htm ).  

Indeed the issue that bit-reproducible computation may become a thing of the past is beginning to be 
recognised in the supercomputing industry too. In a recent presentation on challenges in application 
scaling in an exascale environment, IBM’s Chief Engineer noted 
(http://www.ecmwf.int/newsevents/meetings/workshops/2010/high_performance_computing_14th/ind
ex.html ) that increasingly there will be “a tension between energy efficiency and error detection”, and 
asked whether there needs to be a new software construct which identifies critical sections of code 
where the right answer must be produced – implying that outside these critical sections, errors can (in 
some probabilistic sense) be tolerated.  

One can perhaps imagine a future energy-efficient computer with clusters of processors each with 
different levels of accuracy, integrating a future-generation probabilistic Earth-system simulator. The 
more accurate the processor, the larger the scales of motion it computes tendencies for (cf the 
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“believable” and “unbelievable” scales of Lander and Hoskins, 1997). The “right answers” will be 
produced, only for the large-scale tendencies. Since, overall, computations are dominated by 
estimation of tendencies nearer the truncation scale, the synergistically designed probabilistic 
supercomputer need have relatively few of these slower energy-intensive processors. On top of this, 
the stochastic parametrisations themselves would be computed using the energy-efficient probabilistic 
chips.  

It could be asked what would prevent utterly erroneous computations from destroying the validity of 
the computation (eg due to big errors in the exponents of key real numbers representing the small 
scales). This could be achieved partly by numerical checks against prior physical bounds, and partly 
by repeating computations several times, and taking the mode of some small ensemble of obtained 
values. This has to be a matter for future research, providing hardware developments look sufficiently 
promising.  

As well as being more energy efficient, it is possible that such probabilistic architectures may offer 
significant computational speed up for climate simulator codes, over conventional energy-intensive bit 
reproducible computers. If this is so, probabilistic processing may allow a route to cloud-resolved 
climate simulation, much faster than anyone had previously expected, again allowing one to realise the 
goals of the World Summit on Climate Modelling (Shukla et al, 2010) in the foreseeable future.  

The use of probabilistic Earth-system simulators running on machines built with stochastic processors, 
ie where the inherent quantum-mechanical noise associated with electrons flowing through transistors 
becomes a resource rather than a nuisance, provides a new synergy between software and hardware 
design in the field of weather and climate prediction, hitherto unimagined.  

7. Probabilistic forecasting and seamless weather prediction – 
opportunities and possible obstacles.  

These days, in a number of institutes, common parametrisation schemes are developed for both 
weather and climate prediction, thus realising the notion of seamless prediction in practice (eg 
Hazeleger et al, 2010). In the author’s view, this development is a positive one, allowing the weather 
and climate prediction community to work together towards their common goal of producing reliable 
forecast systems. However, whilst the opportunities to develop reliable probabilistic simulators on all 
timescales are enhanced enormously by embracing the seamless prediction philosophy, there may be 
obstacles too.  

Following Bjerknes (1904), numerical weather prediction (NWP) has historically been considered an 
example of a deterministic initial-value problem. The notion of probabilistic forecasting using 
ensemble prediction methods has evolved more recently as a tool to mitigate the effects of chaotic 
weather variability. Operational ensemble weather prediction systems have been implemented since 
the mid 1980s, long before ensemble methods became commonplace in climate prediction (see the 
review by Lewis, 2005). Following considerable investment in ensemble prediction at a number of 
NWP centres since these early days, most NWP centres now develop both a high-resolution 
deterministic forecast system, and a lower-resolution ensemble prediction system (EPS), and strategic 
goals are targeted separately on improvements in both deterministic scores for the high-resolution 
system (eg root-mean-square error or anomaly correlation coefficient) and probabilistic scores for the 
EPS (eg ranked probability skill score).   
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These goals are individually challenging and require the determined effort of scientists across a range 
of disciplines (numerics, parametrisation, data assimilation etc). This presents challenging resource 
issues: How, for example, should an NWP centre partition its human resources to meet both the 
deterministic strategic goal on the one hand, and the probabilistic target on the other? A common view 
is that if most human resources are put into meeting the deterministic goal, the resulting improvements 
to the deterministic forecast system will necessarily benefit the EPS and help ensure the probabilistic 
target is also met.  

Unfortunately, this concept of “trickle down” does not apply to the development of stochastic 
parametrisation. Weather simulators with stochastic parametrisations cannot produce forecasts with as 
low RMS error, or as high anomaly correlation coefficient, as equivalent simulators with deterministic 
parametrisations. The reason why a probabilistic simulator will not outperform a comparable 
deterministic simulator in terms of deterministic scores, is similar to the reason why the most skilful 
“deterministic” forecasts are associated with the ensemble-mean forecast (see Fig 11). The reason why 
an ensemble-mean forecast has especially high deterministic skill score is that the relatively 
unpredictable components of the flow are “damped out” in an ensemble-mean field. However, a 
penalty is paid for such dynamical smoothing: an ensemble-mean forecast is unlikely to predict the 
occurrence of a severe weather event, if such an event is relatively unpredictable. The ensemble-mean 
forecast “hedges” towards climatology and away from such events. Now, as discussed in Sections 3 
and 4, a deterministic bulk-formula parametrisation can be considered as providing an estimated mean 
tendency based on a putative ensemble of inherently unpredictable sub-grid processes, and hence (as 
shown explicitly in Fig 2) will produce a “damped” simulation of the flow at sub-synoptic scales. In 
the same sense that an ensemble-mean forecast has low deterministic error, a simulator with 
deterministic bulk-formula parametrisation will tend to produce forecasts with lower RMS error than 
an equivalent simulator with stochastic parametrisation, particularly for near grid-scale circulations; 
recall, cf Fig 4, that each realisation of the stochastic parametrisation is designed to represent a 
potential realisation of the sub-grid flow, rather than an ensemble average. However, as with the 
ensemble mean forecast, there is a price to pay for this smoothing – a tendency for the simulator to 
hedge away from simulating extreme flows. This effect will obviously be strongest for small scales. 
However, as discussed in Section 3b, errors can be expected to propagate, intermittently but rapidly, to 
larger-scale components of the flow.  

Put bluntly, stochastic parametrisation is anathema to the strategic goal of maximising deterministic 
skill! As such, development of stochastic parametrisation at the process level, the type of activity 
discussed in Section 5, will not naturally emerge from research focussed primarily at improving the 
high-resolution deterministic forecast system.  

Should NWP centres therefore start planning for the day where they focus exclusively on developing 
probabilistic forecast systems, drop their higher resolution deterministic predictions, and measure 
progress primarily in terms of improvement to probabilistic scores?  

Some may argue against this, noting that the enhanced skill of higher-resolution deterministic forecast 
systems justifies their continued separate development. Unquestionably, this was true in the past: in 
the early days of operational EPS, the deterministic skill of the unperturbed EPS control forecast was 
substantially poorer than that of the higher resolution deterministic forecast. However, these days, the 
skill of the higher-resolution deterministic forecast is no longer substantially greater than that of the 
EPS control. Fig 11 shows that the northern hemisphere 500hPa height anomaly correlation coefficient 
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of the ECMWF (T1279; 16km) high-resolution deterministic forecast, and the corresponding (T639; 
32km) EPS control forecast are very similar indeed. (It is worth commenting that the skill of the EPS 
control may have benefitted from the high-resolution 4DVAR analysis. However, this doesn’t detract 
from the argument that the marginal increase in skill in the high-resolution deterministic forecast is 
relatively small these days.) 

It should certainly not be concluded from this that there is no need for the development of high-
resolution simulators. There is evidence that at T1279 resolution, extreme weather events (such as 
hurricanes) can be simulated with greater realism than at T639 resolution. Rather, the point of Fig 11 
is that the impact of high resolution is more subtle than it was in the past, and much less apparent in 
headline strategic scores such as 500hPa anomaly correlation coefficient. In Section 3b, the question 
was raised: How can we ensure that the advantages of integrating simulators at higher and higher 
resolution will not be somehow be destroyed by the intermittent upscale propagation of error? That is 
to say, how can we produce high-resolution forecast systems that are reliable (the overall theme of this 
paper)? The author believes that the answer to this question is that future high resolution forecast 
systems must be explicitly probabilistic.  

Others, arguing against this conclusion, may claim that weather forecast offices will continue to 
require high-resolution deterministic forecasts for the foreseeable future, since weather-forecast 
customers demand precise deterministic forecasts, and find probabilistic forecasts difficult to 
understand and difficult to use. This argument becomes yet stronger when one realises that the 
marginal computational cost of a single high-resolution deterministic forecast is small compared with 
the cost of a full EPS. We therefore need to study this argument carefully.  

Why is it that the public wants and expects detailed determinstic forecasts? Certaintly, nobody wants 
an uncertain forecast if a perfect deterministic forecast is available. But the latter is not available and 
never will be. In the author’s opinion, a key reason why the public expects deterministic forecasts is 
simply because that’s what they’ve been given and hence led to expect, ever since the days of Fitzroy 
150 years ago, when the first weather forecasts were made available to the general public. However, in 
cases where uncertainty is routinely expressed to the public, eg in the US National Hurricane Center’s 
“cone of uncertainty” for hurricane track predictions (http://www.nhc.noaa.gov/aboutcone.shtml), 
evidence suggests that the public understands, and indeed respects, these uncertain predictions, and 
consequently no longer demands deterministic predictions.  

Independently of whether the public are ready to accept the notion of an explicitly uncertain forecast, 
perhaps there is an argument that by focussing on probabilistic forecasting methods, the traditional 
skills of the weather forecaster will somehow be undermined. However, the author believes that the 
skills of human forecasters will be needed as never before when forecasts are primarily probabilistic in 
nature. In particular, there will be a need for a greater dialogue between forecasters and customers to 
help guide individual customers to formulate weather-sensitive decision strategies appropriate to their 
circumstances. A simple (and rather idealised) example is based on the cost/loss model (Murphy, 
1969). If a customer incurs a loss L if a particular weather event E (eg based on temperature, 
precipitation, wind, or some combination thereof) occurs, but can take protective action at cost C, then 
it makes rational sense to take this protective action on those occasions when the forecast probability 
of E exceeds C/L. In these circumstances, the job of the forecaster will be to “tease out”, at least 
approximately, the customer’s C/L is and therefore to enable that customer to decide on the optimal  
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Figure 11: 500hPa geopotential anomaly correlation coefficient over Northern Hemisphere 
extratropics for March-May 2011. Light solid line: high resolution (T1279) ECMWF deterministic 
forecast. Dashed line: unperturbed control forecast from the (T639) ECMWF ensemble prediction 
system. Dotted line: deterministic forecast based on the ensemble average over the members of the 
ECMWF ensemble prediction system.  

 

 

Figure 12: Potential economic value (Murphy, 1969) as a function of user cost/loss ratio, based 
on prediction of rainfall exceeding 1mm/day over the European domain for March-May 2011 
(1=value of a perfect deterministic forecast, 0=value associated with a climatological probability 
forecast). Solid line for ECMWF Ensemble Prediction System. Dotted line associated with 
ECMWF high resolution deterministic forecast.  

threshold probability for E, above which preventative action should be taken. For example, the 
decision may be to send out salt gritters, or to prepare emergency response teams for potential 
flooding or storm damage. Using this cost/loss model, Fig 12 shows the “potential economic value” of 
the EPS, compared with that the high-resolution deterministic forecast – the latter can be considered as 
a probabilistic forecast producing only probabilities of one or zero - based on precipitation events at 
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forecast day 4. A “potential economic value” of one would correspond to the value making the right 
decision all the time, and a “potential economic value” of zero would correspond to the value obtained 
by knowing only the climatological probability of E. The value of the EPS is substantially higher than 
that of the high resolution deterministic forecast – indeed, for a range of users, the high-resolution 
deterministic forecast has no value at all over and above a decision based only on the climatological 
probability of E. Once again, it should be stressed that this does not at all imply that there is no merit 
in high resolution. Rather, Fig 12 suggests that the value of high resolution is masked when being 
assessed in deterministic mode; an especially unreliable context for decision making. The author 
believes that a T1279 EPS would have higher “potential economic value” than the current T639 EPS, 
especially for severe events E. 

In practice, decision strategies will be much more complex than suggested by a simple cost/loss 
models, for example requiring knowledge of the customer’s “utility function” which maps, ususally 
nonlinearly, multiple correlated weather variables to some quantity relevant to the customer (number 
of ice creams sold, megawatts of electricity produced). It will be the job of tomorrow’s weather 
forecaster to help the weather-sensitive customer to formulate his or her decision strategy in realistic 
circumstances, and then assessing whether or not today’s probabilistic forecast would trigger the 
decision to take some specific action. It is interesting to note that, in this respect, great advances have 
been made recently in applying ensemble-based probability forecasts to provide flood risk assessments 
for farmers and community leaders, in developing countries in the tropics, and these have been shown 
to have genuine value in saving lives and property (Webster et al, 2010).  

In their interface with the general public, media forecasters need not only to be open about the inherent 
uncertainty in forecasts, they should routinely relay to the public that techniques exist to quantify this 
uncertainty. This does not mean displaying isopleths of probability on TV – that would be ineffective 
in communicating uncertainty. However, during media forecasts, forecasters could refer to web sites, 
even better to interactive displays (“press your red button”), where “fan charts” for temperature and 
rainfall, similar to those used by the Bank of England in forecasting inflation rate and gross domestic 
product (http://www.bankofengland.co.uk/publications/inflationreport/irfanch.htm), can be given for 
key cities. Perhaps meteorologists can learn a few things from the economists about communicating 
uncertainty, even if the poor souls don’t know their equations! 

In conclusion then, it is proposed that, in the (hopefully not too distant) future, NWP centres should 
focus exclusively on developing probabilistic forecast systems, dropping their separate higher-
resolution deterministic forecast, and, importantly, these centres should measure progress, and 
formulate strategic goals, principally in terms of improvement to probabilistic scores. Such a strategy 
would certainly be consistent with the aims of forecast offices to provide reliable predictions of severe 
weather: no forecast can be considered reliable without an accurate assessment of forecast uncertainty, 
and severe weather events are often the most unpredictable and hence uncertain.  

However, in terms of the present paper, a move in this direction would also have an important benefit 
for the seamless programme of developing probabilistic Earth-system simulators – crucially it would 
mean that if some new parametrisation scheme in which uncertainty was represented explicitly, had a 
negative impact on conventional deterministic skill score metrics, this would not prevent it from being 
developed or implemented into the simulator code.  
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To restate in case of any misunderstanding, none of the above implies that higher resolution simulators 
shouldn’t continue to be developed. There are very good reasons (discussed above) to work towards 
higher, ultimately convectively-resolved resolutions for both weather and climate prediction. 
However, the author believes that these higher resolution systems should be developed for, and 
ultimately implemented in, ensemble prediction systems, where simulator uncertainty has been 
incorporated at the basic process level. This is the route to reliable prediction on all timescales.  

8. Towards a Seamless Probabilistic Earth-System Simulator for 
Weather and Climate Prediction 

As discussed in Section 2, output from comprehensive climate simulators informs mitigation policies, 
climate adaptation strategies, and efforts to understand the impacts of climate geoengineering, and 
generally reduces society’s vulnerability to current and future climate. One is hard pressed to think of 
examples where computer code has such societal relevance! And yet, as discussed above, there are 
substantial challenges, theoretical, computational, and human, that need to be overcome if we are to 
progress significantly to the goal of providing society with reliable estimates of future climate, 
regional and global.  

In discussing possible ways of overcoming these problems, consider by analogy, the state of the 
European civil aircraft industry in Europe in the mid 20th Century. At this time, all the major European 
countries produced their own civil aircraft. However, it was realised that aircraft were becoming too 
complex and too expensive for individual countries to develop and manufacture independently. Within 
this milieu, the Airbus consortium (http://www.airbus.com/) was formed. At the time, there must have 
been much agonising at the national level, as to whether national aerospace industries were doing the 
right thing getting together in this way. In retrospect, there can be little doubt but that it was. And so, 
within the Airbus consortium, these same national aerospace industries now focus on specific aspects 
of the design and production of aircraft in their fight for market share with their great US rival, 
Boeing.  

Within science, there are many examples where the cost of scientific infrastructure has become too 
great to be funded nationally, and is shared internationally: in particle physics, astronomy, fusion 
research and so on. Again, there must have been some agonising about loss of national prestige by 
some of the countries entering these consortiums, but, in retrospect, there seems little doubt that these 
consortiums have enabled science to progress in ways that would otherwise have been impossible.  

Is this a possible framework for the development of future Earth-system simulators? To some extent it 
already is; for example, within Europe, many climate institutes use the same (NEMO; 
http://www.nemo-ocean.eu/) ocean simulators. Indeed, development of the EC-Earth simulator 
(Hazeleger et al, 2010) provides a specific example of how international cooperation can be 
successful, having been developed from the ECMWF seasonal forecast simulator, ECMWF itself 
being an outstandingly successful example of international cooperation in the context of NWP. 
However, by and large, this framework has not been adopted in the climate communityl; by and large, 
we still label climate simulators by their institutional names.  

The general argument for not adopting the “Airbus” model has been discussed above: we need 
simulator diversity in order to estimate prediction uncertainty and to promote competition. However, 
the science discussed in the previous sections suggests that an alternative approach to uncertainty is 
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beginning to emerge, and, on timescales where we have verification data, this alternative approach 
outperforms that provided by conventional multi-simulator ensembles.  

It should be stressed that it is not being suggested here that stochastic parametrisation implies that all 
we need is one “World Weather and Climate Simulator”. Airbus has undoubtedly been successful, not 
only because it can draw from the pooled resources of European aerospace industries, but also because 
it has a competitor from another geopolitical grouping. Similarly, one would imagine that if there was 
some rationalisation of climate simulator development effort, which embraced the notion of stochastic 
parametrisation as the primary means to estimate simulator uncertainty, then we would still have 
enough (quasi-) independent Earth-system simulators to foster competition and creativity.  

Perhaps there is another more unspoken reason why we continue to maintain institutional climate 
simulators: national and institutional pride. However, as mentioned, in other areas of science we seem 
happy to develop science infrastructure internationally. It should be remembered that one of the 
fundamental reasons why these weather and climate simulators are being developed, is so that we can 
provide the taxpayer with as accurate quantitative estimates of future climate as science and 
technology allows. If more reliable estimates can be provided by pooling resources, then this should 
surely override feelings of hurt national pride. In any case, such “hurt feelings” will be quite 
ephemeral.  

Consistent with the conclusions of the World Climate Modelling Summit (Shukla, 2010), the author is 
therefore suggesting here a vision for the 21st Century, of development of a small number of 
comprehensive Earth System Simulators, perhaps focussed around the main geopolitical grouping in 
the world. Each of these simulators would be run seamlessly in weather and climate prediction mode, 
and would be capable of producing self-contained estimates of uncertainty (on all timescales) using 
the types of nonlinear stochastic-dynamic parametrisation discussed in this paper. The governments of 
the member-state institutes would collectively fund dedicated top of the range supercomputing in 
order that these simulators can be properly tested and run at high resolution. Possibly coupled to fast, 
energy-efficient probabilistic computing hardware, these probabilistic simulators would have a 
nominal truncation scale of at least 1km, allowing explicit simulation of deep convective cloud 
systems. Each of these Earth-system simulators would be supported by teams of scientists from the 
national climate and academic institutes. Different teams would focus on different aspects of the 
simulators: dynamical cores, oceans, clouds, aerosols etc, and on the design of experiments which 
integrated these aspects together. All should contribute to the analysis and diagnosis of results. To 
support this, computational resources would be available, not only for operational integrations, but for 
plentiful research experimentation. Results from the small number of simulators worldwide can 
continue to be combined in a multi-simulator ensemble, but since each is now based on stochastic-
dynamic closure, the resulting ensemble will be much less prone to the type of systemic failure that 
current generation multi-simulator ensembles are capable. National weather services will still play a 
crucial role in development work, in conducting scientific experiments, and in communicating the 
results from the science to their governments and society alike.  

In the course of this paper, evidence has been given how the development of explicitly probabilistic 
weather and climate simulators will lead to more reliable estimates of uncertainty. At the beginning of 
the paper, it was also suggested that these methods might be able to actually reduce uncertainty. In 
considering this possibility, let us focus here on what must surely be the most important, as well as the 
most uncertain, of all the feedbacks in the climate change problem: that associated with cloud. As is 
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well known (Solomon et al, 2007), even the sign of the cloud feedback is uncertain: an increase in 
low-level cloud will tend to cool the surface, an increase in high-level cloud will tend to warm the 
surface. Upon the sign and magnitude of this feedback, the destiny of humanity depends, with 
projections ranging from a future of catastrophe and calamity, to one in which we may be able to adapt 
with relative ease.  

One of the problems in thinking about the notion of “cloud feedback”, is that a world without cloud, 
and hence without cloud feedback, would be utterly alien to us: clouds are absolutely intrinsic to the 
circulation patterns we observe around us. Not only are clouds determined by the temperature and 
humidity structure associated with these circulation patterns, clouds in turn are key to determining 
these circulation patterns, both locally and remotely. For example, anomalous latent heat release in 
convective cloud systems over the Caribbean may be key to setting up a blocking anticyclone over 
Europe, whilst the stratus decks that form locally in the vicinity of the blocking anticyclone are key to 
determining the surface temperature under the block.  

This means that we cannot treat the problem of cloud feedback solely as a problem in atmospheric 
thermodynamics; the problem is as much dynamic as thermodynamic. For the sake of argument, let us 
consider climate as a dynamical system with distinct nonlinear regime structures (Palmer, 1998; Straus 
et al, 2007) in both the tropics and extratropics. These regimes will in turn have distinct cloud 
properties (Williams and Webb, 2009): a blocking anticyclone may be dominated by relatively thin 
stratus clouds in winter and cirrus clouds in summer, whilst a cyclonic weather regime will contain 
significant amounts of thick nimbostratus cloud all times of year. From this dynamical perspective, a 
key element of understanding the cloud feedback problem lies in estimating reliably how 
anthropogenic forcing will change the frequencies of occurrence of the regimes. (Changes to the 
structure of the regimes may also be important, but theory suggests this is a secondary aspect of the 
problem.) That is to say, changes in these frequencies of occurrence will be one of the key factors in 
determining whether upper or lower-level clouds increase or decrease as a result of anthropogenic 
climate change. Small wonder then, that current climate simulators have such difficulty in simulating 
the sign of cloud feedback with any consistency. As discussed above, these same simulators have 
difficulty simulating the statistics of observed weather regimes. 

Hence, to really make progress in reducing the uncertainty in cloud feedbacks, it will be essential that 
the statistics of weather regimes are simulated correctly: their three dimensional structure, their 
embedded cloud properties, and their frequency of occurrence (see also Stephens, 2005). This is a 
profoundly challenging dynamical problem, and results suggest that the current generation of climate 
simulators are not fully up to the challenge.  

With this in mind, we can state why the proposal for inherently probabilistic Earth-system simulators 
will reduce uncertainty in predictions of climate: 

a) As discussed above, representing simulator uncertainty by stochastic parametrisation 
undermines the inherent need for a large diversity of simulators, meaning that it will be 
possible to pool human and computational resources. Economies of scale will enable climate 
scientists to have dedicated access to top-of-the-range supercomputers, enabling key physical 
processes to be simulated, including in situ Rossby wave breaking, key for maintaining 
weather regimes against dissipation (Woollings et al, 2008), and remote tropical convective 
systems which help “force” these regimes.  
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b) Being more consistent with the underlying equations of motion, it could be argued that 
if there are to be breakthoughs in parametrisation, eg of the effects of unresolved cloud 
systems, they are more likely to occur within a more general probabilistic framework, 
than within the traditional deterministic framework.  

c) Development of seamless probabilistic weather and climate simulators will enable 
sophisticated diagnostic tools from data assimilation to be used to reduce climate 
prediction uncertainty (Rodwell and Palmer, 2007), eg based on studies of biases in 
analysis increments, composited on specific weather regimes. Indeed, incorporation of 
stochastic parametrisation in data assimilation is currently a key area of development 
in NWP and diagnosis of how well the standard deviation of the analysis increments 
are calibrated against the ensemble spread of the ensemble of data assimilations 
provides a powerful way to test stochastic parametrisation eg of stochastic cloud 
schemes (M. Bonavita, personal communication). 

d) There is evidence that stochastic parametrisations can improve directly, estimates of 
the frequency of occurrence of weather regimes (Jung et al,2005). The reason relates 
to the rectification of the flow by stochastic noise – as a simple analogy, imagine a ball 
bearing moving in a potential with multiple minima. An overly damped system will 
lead to the ball bearing spending too much time in the dominant well, and this will be 
reflected in a bias in the time-averaged position of the ball.  

The same arguments could be applied to another of the important uncertainties in climate prediction: 
the impact of aerosols. Here the key uncertainties relate to the indirect effect of aerosols, ie through 
their modification of cloud. Again, this indirect effect will be regime dependent, implying that we will 
never be able to assess aerosol impact reliably in the atmosphere, without an accurate simulation of 
structure and frequency of occurrence of weather regimes.  

9. Conclusions 
Compared with the economists, weather and climate scientists do indeed know their equations, at least 
as they relate to the physics of weather and climate. However, these equations cannot be solved by 
pencil and paper, and this is where the problems begin. Algorithmic representations of the equations of 
motion necessarily involve errors, and with conventional numerical algorithms based on deterministic 
closures, these errors appear to lead to substantial biases and considerable uncertainty in simulating 
climate. Some discussion has been given to the possibility that convergence to the “true” underlying 
equations with increasing resolution, may be exceptionally slow, due to the “-5/3” power law for 
atmospheric energy. Some technical discussion has been given to an alternative strategy for closing 
the equations, where we recognise explicitly the inherent uncertainty in any algorithmic representation 
of the underlying equations. Being more consistent with the equations of motion, then breakthroughs 
in the parametrisation problem, if they are to occur, will be more likely within a stochastic framework, 
than in the traditional deterministic framework.  

A key conclusion of this paper is that, on timescales where verification data exists, these stochastic 
methods are beginning to outperform conventional multi-simulator ensembles. However, there is 
much work to be done before all relevant Earth system parametrisations can be said to have been 
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developed in this probabilistic way. Indeed, it has been concluded that the traditional challenge in 
numerical weather prediction, of reducing deterministic measures of forecast error, may increasingly 
become an obstacle to the seamless development of probabilistic weather and climate simulators. It 
was argued that it may be time to consider focussing operational weather forecast development 
entirely on high-resolution ensemble prediction systems. 

Until this work has matured, there will continue to be value in coordinated multi-simulator ensembles, 
particularly for the developing “climate services” arena. For example, nothwithstanding the theoretical 
problems of multi-simulator ensembles highlighted in this paper, the author believes there is merit in 
designing a high-resolution multi-nation initialized “EUCP15” multi-simulator ensemble to replace the 
relatively low-resolution uninitialised UKCP09 ensemble discussed above. Coordinated work in this 
area over the next few years could develop in parallel with the longer timescale stochastic 
parametrisation programme.  

A key aspect of this paper has been discussion on some of the implications of a move towards 
probabilistic Earth-system simulation, implications that transcend the technical aspects of stochastic 
parametrisation. In particular, by underming the argument for a large pool of quasi-independent 
simulators, the stochastic parametrisation programme provides new support for one of the key 
conclusions of the World Summit on Climate Modelling (Shukla et al, 2011): for a pooling of human 
and computational resources amongst climate institutes, and for a substantial rationalization of 
development work towards a very small number of independent Earth-system simulators.  

Given the importance and urgency of predicting Earth’s climate as accurately as science and 
technology allows, it is time to give serious thought to such change.  
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