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ABSTRACT

This paper has a brief discussion of three topics which are central themes of this ECMWF-Thorpex-Clivar work-
shop and also are major research themes of the first author and several collaborators. The three topics discussed
briefly here are the following: 1) Improving tropical convective parameterization through the stochastic multi-
cloud model ; 2) Improving model fidelity and long-range forecasting skill through empirical information theory
and stochastic parameterization; 3) Judicious model errors in filtering turbulent dynamical systems: Stochastic
Parameterization Extended Kalman Filter (SPEKF)

1 Improving tropical convective parameterization through the
stochastic multi-cloud model

Despite recent advances in supercomputing, current general circulation models (GCMs) poorly repre-
sent the variability associated with organized tropical convection. A stochastic multicloud convective
parameterization based on three cloud types (congestus, deep, and stratiform), introduced in 2010 by
Khouider, Biello and Majda (hereafter KBM10) in the context of a single column model, has been used
recently to study flows above the equator without rotation effects (Frenkel et al., 2011). The stochastic
model dramatically improves the variability of tropical convection compared to the conventional mod-
erate and coarse resolution paradigm GCM parameterizations. This increase in variability comes from
intermittent coherent structures such as synoptic and mesoscale convective systems, analogs of squall
lines and convectively coupled waves seen in nature whose representation is improved by the stochastic
parameterization. Furthermore, simulations with sea surface temperature (SST) gradient yield realistic
mean Walker-cell circulation with plausible high variability. An additional feature of the new stochastic
parameterization is a natural scaling of the model from moderate to coarse grids which preserves the
variability and statistical structure of the coherent features. These results systematically illustrate, in a
paradigm model, the benefits of using the stochastic multi-cloud framework to improve deterministic
parameterizations with clear deficiencies.

The search for methods of adequately addressing the interactions across temporal and spatial scales
between the large scale circulation and organized cloud systems, from individual clouds to large-scale
clusters and superclusters to planetary-scale disturbance, has not been fruitless. Cloud-resolving models
on fine computational grids and high-resolution numerical weather prediction models with improved
convective parametrizations succeed in representing some aspects of organized convection (ECMWF,
2003; Moncrieff et al., 2007). However, due to their extremely high computational cost, these methods
cannot be applied to large ensemble-size weather prediction or climate simulations. The complexity of
the problem has motivated the development of an approach that directly addresses the multiscale nature
of the problem. Superparameterization (SP) methods (Grabowski and Smolarkiewicz, 1999; Grabowski,
2001, 2004; Randall et al., 2003; Majda, 2007) use a cloud resolving model (CRM) in each column
of the large scale GCM to explicitly represent small scale and mesoscale processes and interactions
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among them. The computational cost can be further reduced by techniques such as sparse space-time
SP (Xing et al., 2009). Nonetheless computationally inexpensive GCM parameterizations that capture
the variability and coherent structure of deep convection have remained a central unsolved problem in
the atmospheric community.

The most common conventional cumulus parameterizations are based on the quasi-equilibrium (QE)
assumption first postulated by Arakawa and Schubert (1974), the moist convective adjustment idea of
Manabe et al. (1965), or the large scale moisture convergence closure of Kuo (1974) type. As such,
the mean response of unresolved modes on large/resolved scale variables is formulated according to
a prescribed deterministic closure. While many recipes for the closures have been created (Kain and
Fritsch, 1990; Betts and Miller, 1986; Zhang and McFarlane, 1995), these purely deterministic param-
eterizations were found to be inadequate for the representation of the highly intermittent and organized
tropical convection (Palmer, 2001). Many of the improvements in GCMs of the last decade came from
the relaxation of the QE assumption, for example, through the addition of a stochastic perturbation.
Buizza et al. (1999) used a stochastic backscattering model to represent the model uncertainties in a
GCM while Lin and Neelin (2003) used a stochastic parametrization to randomize the way in which
deep convection responds to large fluctuations via a prescribed probability distribution function for the
convective time scale. Majda and Khouider (2002) were the first to propose a stochastic model for con-
vective inhibition (CIN), that allows both internal interactions between convective elements and two-
way interactions between the convective elements and the large scale/resolved variables. Their model
is based on an Ising-type spin-flip model used as a model for phase transitions in material science (Kat-
soulakis et al., 2003). When coupled to a toy GCM, this stochastic parameterization produced eastward
propagating convectively coupled waves that qualitatively resemble observations (Khouider et al., 2003;
Majda et al., 2008) despite the extreme simplicity of the model and deficiency of the underlying con-
vective parameterization. Stochastic processes have been used to parameterize convective momentum
transport (Majda and Stechmann, 2008), to improve conceptual understanding of the transition to deep
convection through critical values of column water vapor (Stechmann and Neelin, 2010), as well as for
the analysis of cloud cover data in the tropics and the extratropics (Horenko, 2010).

The stochastic multicloud model for tropical convection introduced by Khouider et al. (2010) (hereafter
KBM10) is a novel approach to the problem of missing tropical variability in GCMs. The stochastic
parameterization is based on a Markov chain lattice model where each lattice site is either occupied by
a cloud of a certain type (congestus, deep or stratiform) or it is a clear sky site. The convective elements
interact with the large scale environment and with each other through convectively available potential
energy (CAPE) and middle troposphere dryness. When local interactions between the lattice sites are
ignored, a coarse grained stochastic process that is intermediate between the microscopic dynamics and
the mean field equations (Katsoulakis et al., 2003; Khouider et al., 2003; Majda et al., 2008) is derived
for the dynamical evolution of the cloud area fractions. Besides deep convection, the stochastic multi-
cloud model includes both low-level moisture preconditioning through congestus clouds and the direct
effect of stratiform clouds including downdrafts which cool and dry the boundary layer. The design
principles of the multicloud parameterization framework are extensively explored in the deterministic
version of the model developed by Khouider and Majda (2006a; 2006b; 2007; 2008a; 2008b, hereafter
KM06a, KM06b,KM07, KM08a, KM08b, respectively).

1.1 Dynamical core of the multicloud model

The multicloud parametrization framework assumes three heating profiles associated with the main
cloud types that characterize organized tropical convective systems (Johnson et al., 1999): cumulus
congestus clouds that heat the lower troposphere and cool the upper troposphere, through radiation and
detrainment, deep convective towers that heat the whole tropospheric depth, and the associated lagging-
stratiform anvils that heat the upper troposphere and cool the lower troposphere, due to evaporation
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of stratiform rain. Accordingly, Khouider and Majda (e.g. KM06a, KM08a) used the momentum and
potential temperature equations for the first and second baroclinic modes of vertical structure, that are
directly forced by deep convection and both congestus and stratiform clouds, respectively, as a minimal
dynamical core that captures the main (linear response) effects of these three cloud types. Versions
of this simple modeling framework that include effects of convective momentum transport (CMT) are
found in Majda and Stechmann (2008, 2009) and Khouider et al. (2011). The multicloud model also
carries equations for the vertically averaged moisture (water vapor mixing ratio), over the tropospheric
depth, and bulk boundary layer dynamics averaged over the atmospheric boundary layer (ABL).

1.2 The stochastic multicloud model

The stochastic multicloud parameterization is designed to capture the dynamical interactions between
the three cloud types that characterize organized tropical convection and the environment using a coarse
grained lattice model (KBM10). To mimic the behavior within a typical GCM grid box, a rectangu-
lar n x n lattice is considered, where each element can be either occupied by a congestus, deep or a
stratiform cloud or is clear sky, through an order parameter that takes values of 0,1,2 or 3 on each
lattice site. A continuous time stochastic process is then defined by allowing the transitions, for indi-
vidual cloud sites, from one state to another according to intuitive probability transition rates, which
depend on the large scale-resolved variables. These large scale variables are the convectively avail-
able potential energy integrated over the whole troposphere (CAPE), the convectively available energy
integrated over the lower troposphere CAPEl , and the dryness of the mid troposphere, which is a func-
tion of the difference between the atmospheric boundary layer (ABL) temperature θeb and the middle
tropospheric potential temperature θem = q + (2

√
2/π)(θ1 + α2θ2). The inclusion of dryness of the

middle troposphere accounts for mixing of the convective parcels with dry environmental air (KM06a,
KM06b,KM07, KM08a, KM08b,KBM10).

The probability rates are constrained by a set of intuitive rules which are based on observations of
cloud dynamics in the tropics (e.g, Johnson et al., 1999; Mapes, 2000, Khouider and Majda 2006, and
references therein). Following KBM10, a clear site turns into a congestus site with high probability if
low level CAPE is positive and the middle troposphere is dry. A congestus or clear sky site turns into
a deep convective site with high probability if CAPE is positive and the middle troposphere is moist.
A deep convective site turns into a stratiform site with high probability. Finally, all three cloud types
decay naturally to clear sky at some fixed rate. All other transitions are assumed to have negligible
probability. These rules are formalized in (Frenkel et al., 2011)(hereafter FMK2011) in terms of the
transition rates Rik and the associated time scales τik. Notice that the assumption that the transition
rates depend on the large scale variables accounts for the feedback of the large scales on the stochastic
model, while ignoring the interactions between the lattice sites all together implies that the stochastic
processes associated with the different sites are identical. The latter simplification makes it easy to
derive the stochastic dynamics for the GCM grid box cloud coverages alone, which can be evolved
without the detailed knowledge of the micro-state configuration, by using a coarse-graining technique
(?Katsoulakis et al., 2003b, Khouider et al. 2003) that yields here a system of three birth-death-like
processes, corresponding to the three cloud types. The resulting birth-death Markov system is easily
evolved in time using Gillespies exact algorithm (Gillespie, 1975, 1977). Thus given the large scale
thermodynamic quantities the stochastic process yields the dynamical evolution for the congestus, deep
and stratiform cloud fractions σc,σd and σs respectively.

Figure 1 shows the performance of the multicloud model in a column test mode (FMK2011). Note the
random intermittent bursts of convection often with phasing of the congestus to deep to stratiform area
fractions associated with tropical convection. Figure 2 compares the precipitation profiles produced by
the stochastic multi-cloud model with a Walker simulation on 40,000 km domain (FMK2011) with the
high resolution CRM of (Grabowski et al., 2000) in similar set-up on a 4,000 km domain(right). The
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qualitative reproduction of the variability by the much cheaper stochastic multi-cloud model is striking!
In addition, the stochastic multi-cloud model produces much clearer intense rain events, associated with
convectively coupled waves, outside the warm pool, as observed in nature.

2 Improving model fidelity and sensitivity, and long range
forecasting skill through empirical information theory and
stochastic parameterization

Predicting the long range behavior of complex systems in nature in diverse disciplines ranging from cli-
mate change science (Randall et al. (2007); Hwang and Frierson (2010)) to materials (Chatterjee and
Vlachos (2007)) and neuroscience (Rangan et al. (2009)) is an issue of central importance in contem-
porary engineering and science. Accurate predictions are hampered by the fact that the true dynamics
of the system in nature are actually unknown due to inadequate scientific understanding or inadequate
spatio-temporal resolution in the imperfect computer models used for these predictions; in other words,
there are significant model errors compared to the true signal from nature. Recently, information theory
has been utilized in different ways to systematically improve model fidelity and sensitivity (Majda and
Gershgorin (2010, 2011a)), to quantify the role of coarse-grained initial states in long range forecasting
(Giannakis and Majda (2011a,b)), and to make an empirical link between model fidelity and forecasting
skill (DelSole (2005); DelSole and Shukla (2010)). Imperfect models for complex systems are con-
strained by their capability to reproduce certain statistics in a training phase where the natural system
has been observed; for example, this training phase in climate science is roughly the sixty year data set
of extensive observations of the Earth’s climate system. For long range forecasting, it is natural to guar-
antee statistical equilibrium fidelity for an imperfect model and a framework using information theory
is a natural way to achieve this in an unbiased fashion (Majda and Gershgorin (2010, 2011a); DelSole
and Shukla (2010); Giannakis and Majda (2011a,b)). First, equilibrium statistical fidelity for an im-
perfect model depends on the choice of coarse-grained variables utilized (Majda and Gershgorin (2010,
2011a)); secondly, equilibrium model fidelity is a necessary but not sufficient condition to guarantee
long range forecasting skill (Giannakis and Majda (2011b)). For example, Section 2.6 of Majda et al.
(2005) extensively discusses three very different strongly mixing chaotic dynamical models with forty

variables and with the same Gaussian equilibrium measure, the TBH, K-Z, and IL96 models, so that all
three models have the same climate equilibrium fidelity but have completely different forecasting skill.
On the other hand, there are notable examples where improving equilibrium fidelity results in improved
model sensitivity (Majda and Gershgorin (2010)) or intermediate range forecasting skill (DelSole and
Shukla (2010)). The central issue addressed recently in Majda and Gershgorin (2011b) is the following
one: Is there a systematic way to improve long range forecasting skill of imperfect models satisfying
equilibrium fidelity? Are there a systematic set of statistical prediction tests in the training phase beyond
equilibrium fidelity which guarantee improved long range forecasting skill for an imperfect model?

The main goal of Majda and Gershgorin (2011a) was to provide such a direct link by utilizing fluctuation
dissipation theorems (FDT) for complex dynamical systems (DekerH1975 (1975); Majda et al. (2005);
Marconi et al. (2008)) together with the framework of empirical information theory for improving
imperfect models developed recently (Majda and Gershgorin (2010, 2011a)). The main link utilizing
FDT is developed in Majda and Gershgorin (2011b). This is followed by demonstration of this approach
on a suite of mathematical test models which despite their simplicity and mathematical tractability,
nevertheless, mimic crucial statistical features of complex systems such as Earth’s climate.

A simple example illustrating the fundamental difficulties in climate science in trying to use imperfect
models to predict the sensitivity for the perfect model is presented next (Majda and Gershgorin (2011a)).

A typical situation with model error for complex systems arises when the true system has additional

124 ECMWF Workshop on Model Uncertainty, 20-24 June 2011



MAJDA, A.J. ET AL.: IMPROVING COMPLEX MODELS . . .

−0.2

0

0.2

0.4

0.6

K

−1.5

−1

−0.5

0

0.5

1

1.5

K

0

0.05

0.1

0.15

20 22 24 26 28 30 32 34 36 38 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Days

θ
1

θ
2

θ
eb

q

σ
c

σ
d

σ
s

C
l

C
D

Figure 1: Time series of the large-scale variables, the (stochastic) cloud area fractions, CAPE and
Dryness for the standard parameter of FMK 2011.
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Figure 2: Precipitation profiles produced by the stochastic multi-cloud model (left) with a Walker
simulation on 40,000 km domain (FMK2011) and the high resolution CRM of (Grabowski et al.,
2000) in similar set-up on a 4,000 km domain (right).
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degrees of freedom that are hidden from the family of imperfect models utilized to study this system
either through lack of scientific understanding or the practical lack of computational resolution. The
simplest example with these features is to consider the true system as given by the two linear stochastic
equations

du
dt

= au+ v+F,

dv
dt

= qu+Av+σẆ ,

(1)

where Ẇ is white noise; the system of equation in 2.5 has a smooth Gaussian statistical steady state
provided that

a+A < 0, aA−q > 0. (2)

Assume that the variable v in 2.5 is hidden from the modeling process where all imperfect models are
given by the scalar stochastic equation

duM

dt
=−γMuM +FM +σMẆM. (3)

The natural requirement γM > 0 is needed for 2.7 to have a Gaussian statistical steady state. Now
consider the situation where the model in 2.7 has been tuned to match the single time statistics for u in
2.5 with perfect fidelity by matching the mean and variance of uM with u; elementary calculations show
this is true for a one parameter family of models parameterized by γM > 0 provided that FM, σ2

M satisfy
the equilibrium mean and variance equations

FM

γM
=− AF

aA−q
,

σ2
M

2γM
=− σ2

2(a+A)(aA−q)
≡ E. (4)

Thus, the conditions in 2.8 for FM and σM guarantee perfect model fidelity for any γM > 0. In many
practical situations such as actual experiments or climate science, it is important to understand the
response of the natural system to external forcing, δF , and to hope that the response of the imperfect
model captures the features of this response. The natural system response for 2.5 occurs by replacing F
in 2.5 by F +δF while the same experiment in the model for 2.7 involves replacing FM by FM +δF . For
both the natural system in 2.5 and the model system in 2.7, the only change in the equilibrium response
is through the change in mean

δu =− A
aA−q

δF, δuM =
1

γM
δF, (5)

while the variance of u for the perfect model and uM for the imperfect model stays constant at the same
value E determined through the second equality in 2.8. Now assume that the natural system satisfies
the stability conditions in 2.6 with A > 0. We claim that no model from 2.7, even with perfect fidelity
in 2.8 for any γM > 0, can match the sensitivity of the natural system correctly; this is easy to see from
2.9 since for A > 0, sign(δu) =−sign(δF) but for all models from 2.7, sign(δuM) = sign(δF) and the
perfect and model sensitivity are always anti-correlated!

Thus, even though the climate models satisfying 2.7, 2.8 are tuned to exactly match the true climate,
these imperfect models are intrinsically deficient in calculating the crucial climate sensitivity for A > 0.

2.1 Systematically improving climate models through empirical information theory

With a subset of variables u ∈ IRN and a family of measurement functionals EL(u) = (E j(u)), 1≤ j≤ L,
for the perfect system, empirical information theory (Jaynes (1957); Majda and Wang (2006)) builds
the least biased probability measure πL(u) consistent with the L measurements of the present climate,
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EL. There is a unique functional on probability densities (Jaynes (1957); Majda and Wang (2006)) to
measure this given by the entropy

S =−
∫

π logπ, (6)

and πL(u) is the unique probability so that S (πL(u)) has the largest value among those probability
densities consistent with the measured information, EL. All integrals as in 2.10 are over the phase space
IRN unless otherwise noted. For example, measurements of the mean and second moments of the perfect
system necessarily lead to a Gaussian approximation (Majda et al. (2002); Majda and Wang (2006))
to the perfect system from measurements, πL(u) = πG(u). Any model of the perfect system produces a
probability density, πM(u). The natural way (Kullback and Leibler (1951); Majda and Wang (2006))
to measure the lack of information in one probability density, q(u), compared with the true probability
density, p(u), is through the relative entropy, P(p,q), given by

P(p,q) =
∫

p log
(

p
q

)
. (7)

This asymmetric functional on probability densities, P(p,q), has two attractive features (Kullback and
Leibler (1951); Majda et al. (2002); Majda and Wang (2006)) as a metric for model fidelity: (i)
P(p,q)≥ 0 with equality if and only if p = q; (ii) P(p,q) is invariant under general nonlinear changes
of variables. The first issue to contend with is the fact that πL(u) is not the actual perfect model density
but only reflects the best unbiased estimate of the perfect model given the L measurements, EL. Let
π(u) denote the probability density of the perfect model, which is not actually known. Nevertheless,
P(π,πL) precisely quantifies the intrinsic error in using the L measurements of the perfect model, EL.
Consider an imperfect model with its associated probability density, πM(u); then the intrinsic model
error in the climate statistics is given by P(π,πM). In practice, πM(u) is determined by no more
information than that available in the perfect model.

Consider a class of imperfect models, M . The best imperfect model for the coarse-grained variable u
is the M∗ ∈M so that the perfect model has the smallest additional information beyond the imperfect
model distribution πM∗(u), i.e.,

P(π,πM∗) = min
M∈M

P(π,πM). (8)

Also, actual improvements in a given imperfect model with distribution πM(u) resulting in a new πM
post(u)

should result in improved information for the perfect model, so that P(π,πM
post) ≤P(π,πM). Other-

wise, objectively, the model has not been improved compared with the original perfect model. The
following general principle (Majda and Gershgorin (2010); Majda et al. (2005)) facilitates the practical
calculation of 2.12

P(π,πM
L′ ) = P(π,πL)+P(πL,π

M
L′ )

= (S (πL)−S (π))+P(πL,π
M
L′ ) for L′ ≤ L.

(9)

The entropy difference, S (πL)−S (π) in 2.13 precisely measures an intrinsic error from the L mea-
surements of the perfect system. With 2.13 and a fixed family of L measurements of the actual climate,
the optimization principle in 2.12 can be computed explicitly by replacing the unknown density π by
the hypothetically known πL in these formulas so that, for example, πM∗ is calculated by

P(πL,π
M∗
L′ ) = min

M∈M
P(πL,π

M
L′ ). (10)

The most practical setup for applying the framework of empirical information theory developed above
arises when both the perfect system measurements and the model measurements involve only the mean
and covariance of the variables u so that πL is Gaussian with climate mean ū and covariance R while πM
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is Gaussian with model mean ūM and covariance RM. In this case, P(πL,π
M) has the explicit formula

(Majda and Wang (2006); Kleeman (2002a))

P(πL,π
M) =

[
1
2
(ū− ūM)∗(RM)−1(ū− ūM)

]
+
[
−1

2
logdet(RR−1

M )+
1
2
(tr(RR−1

M )−N)
]
.

(11)

Note that the first term in brackets in 2.15 is the signal, reflecting the model error in the mean but
weighted by the inverse of the model covariance, R−1

M while the second term in brackets, the dispersion,
involves only the model error covariance ratio, RR−1

M . The intrinsic metric in 2.15 is invariant under
any (linear) change of variables which maps Gaussian distributions to Gaussians and the signal and
dispersion terms are individually invariant under these transformations; this property is very important.

As a simple illustration of these concepts, let’s assume the elementary perfect and imperfect climate
models discussed in (1) and (3) above, where as shown below, empirical information theory reveals an
intrinsic barrier for the imperfect models to prediction of the sensitivity for A > 0.

The formula in 2.15 applies exactly to these models with perfect fidelity with

P(πδ ,πM
δ

) =
1
2

E−1
∣∣∣∣− A

aA−q
− 1

γM

∣∣∣∣2 |δF |2. (12)

In this situation with A > 0, the attempt to minimize the information theoretic model error in the sen-
sitivity through the general principle in 2.12 is futile because no finite minimum over γM of 2.16 is
achieved and necessarily γM → ∞ in the approach to this minimum value; in other words, there is an
intrinsic barrier to skill in sensitivity which cannot be overcome with the imperfect models in 2.7 even
though they satisfy perfect model fidelity in 2.8. In this situation, information theory predicts that one
needs to enlarge the class of models beyond 2.7 by introducing more degrees of freedom in the model.
On the other hand, if the natural system satisfies 2.6 with A < 0, then using 2.16 to minimize the lack
of information in the sensitivity in the models which satisfy perfect fidelity in 2.8 results in the unique
model with

γ
∗
M =−A−1(aA−q), A < 0, (13)

and this model captures both the model fidelity and model sensitivity to this forcing parameter exactly.

The relative entropy in (7) occupies a central role in statistics (Bernardo and Smith (2000); Berger
(1985); Williams (2001)) and large deviation theory in the limit of large sample sizes (Varadhan

(1984, 1985)). The empirical point of view presented here is useful for developing unbiased empirical
statistical/physics-based models and has been utilized to predict the location and structure of Jupiter’s
Red Spot from observations of the Galileo mission, as well as the behavior of large-scale quantities in
statistical fluid dynamics (Majda and Wang (2006)). Kleeman (2002a) first applied these ideas to the
prediction skill for long range forecasting in perfect models and these concepts have been developed
extensively (Kleeman (2011); Majda et al. (2002); Kleeman et al. (2002b); Abramov et.al (2005);
Haven et al. (2005)) in the context of perfect models. Recent research utilizing empirical information
theory has focussed on important coarse-grained descriptions of perfect and imperfect models and im-
proving the long range forecasting and sensitivity of imperfect models (Majda and Gershgorin (2010);
Giannakis and Majda (2011a,b); Majda and Gershgorin (2011a,b)).

2.2 Statistically exactly solvable test models capturing crucial features of
climate change science

An important role of mathematics in applied sciences is to develop simpler exactly or easily solvable
test models with unambiguous mathematical features which nevertheless capture crucial features of
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vastly more complex systems in science and engineering. Such models provide firm underpinning for
advancing scientific understanding and developing new numerical or statistical algorithms. With all of
the difficult issues in climate science, such unambiguous test models assume a crucial role.

We introduce a family of test models for climate change science which have direct qualitative relevance
for actual observed features for tracers in the atmosphere (Neelin et al. (2009); Bourlioux and Majda
(2002)) with the additional attractive feature of exactly solvable statistics for the mean and covariance
with many degrees of freedom despite the inherent statistical nonlinearity. Thus, they are physically
relevant unambiguous test models for uncertainty in climate change science (Majda and Gershgorin
(2010, 2011a,b)). The models have a zonal (east-west) mean jet, U(t), a family of planetary and

synoptic scale waves with north-south velocity v(x, t) with x, a spatially periodic variable representing a
fixed midlatitude circle in the east-west direction, and tracer gas T (x, t) with a north-south environmental
mean gradient α and molecular diffusivity κ (Majda and Gershgorin (2011c); Bourlioux and Majda
(2002)). The dynamical equations for these variables are

A)
dU
dt

=−γU + f (t)+σẆ ,

B)
dv
dt

= P
(

∂

∂x

)
v+σv(x)Ẇv + fv(x, t),

C)
∂T
∂ t

+U(t)
∂T
∂x

=−αv(x, t)+κ
∂ 2T
∂x2 −dT T.

(14)

The functions f (t), fv(x, t) are known time-periodic functions with period of 1 yr reflecting the changing
external forcing of the seasonal cycle, while Ẇ , Ẇv, represent random white noise fluctuations in forcing
arising from hidden nonlinear interactions and other processes (Majda et al. (2010); Majda and Grote
(2007)). The equation in (2.2B) for the turbulent planetary waves is solved by Fourier series with

independent scalar complex variable versions of the equation in (2.2A) for each different wave number
k (Majda et al. (2010); Majda and Grote (2007)); in Fourier space the operator P̂k has the form
P̂k =−γk + iωk with frequency ωk = βk/(k2 +Fs) corresponding to the dispersion relation of baroclinic
Rossby waves and dissipation γk = ν(k2 + Fs) where β is the north-south gradient of rotation, Fs is
the stratification, and ν is a damping coefficient; the white noise forcing for (2.2)B is chosen to vary
with each spatial wave number k to generate an equipartition energy spectrum for planetary scale wave
numbers 1|k|10 and a |k|−5/3 turbulent cascade spectrum for 11|k|52 (see Majda et al. (2010); Majda and
Grote (2007)). The zonal jet U(t) = Ū(t)+U ′(t), where Ū(t) is the climatological periodic mean with
γ , and σ chosen so that this jet is strongly eastward while the random fluctuations, U ′(t), have a standard
deviation consistent with such eastward dynamical behavior. While U(t),v(x, t) have exactly solvable
Gaussian statistics mimicking features of the atmosphere, the tracer T (x, t) has non-Gaussian behavior
due to the nonlinear tracer flux term U ′(t) ∂T

∂x in (2.2C) with intermittent fat tails like realistic tracers in
the atmosphere (Majda and Gershgorin (2011c); Neelin et al. (2009)); nevertheless, T (x, t) has exactly
solvable mean and covariance climate statistics with explicit formulas. These procedures define the
exactly solvable statistics for the perfect climate. Actual AOS models utilized in climate change science
typically have too much additional damping and one can mimic this here in the representative AOS
models by increasing the two parameters γ , v for (2.2A,B) to γM, vM to define the AOS model velocity
fields U(t)M = ŪM(t) +U ′M(t),vM(x, t), with model error. The turbulent tracer in an AOS model is
usually calculated roughly by an eddy diffusivity (Emanuel et al. (2005); Neelin et al. (2003); NRC
(1979); Randall et al. (2007)), U ′M(t) ∂T

∂x =−κ∗MTxx, and in the present models there is an exact explicit
formula for κ∗M. Thus, the AOS model tracer satisfies

∂TM

∂ t
+ŪM(t)

∂TM

∂x
=−αvM(x, t)+(κ +κ

∗
M)

∂ 2TM

∂x2 −dT TM +σTẆ (x, t), (15)
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where Ẇ (x, t) denotes space-time white noise forcing with variance σT to overcome deterministic model
error. With (15) the AOS model with (UM,vM,TM) has Gaussian statistics.

Note that the above perfect and imperfect climate models do not have positive Lyapunov exponents but
nevertheless exhibit non-normal transient growth through the non-zero mean gradient, α > 0, for the
tracer. These models have been utilized as unambiguous test models for all the issues of climate change
science, information theory, prediction, and FDT described earlier in this section (Majda and Gershgorin
(2010, 2011a,b)). These are also important test models for the real-time recovery of turbulent tracer

fields from partial observations, an important topic with much practical interest in climate science, as
well as other disciplines (Gershgorin et al. (2011)). A complete development of the turbulent statistics
of such test models is presented in Majda and Gershgorin (2011c). Similar exactly solvable test models
with intermittent positive Lyapunov exponents are developed elsewhere (Gershgorin et al. (2010a,b);
Branicki et al. (2011)) and mentioned briefly in section 3 in the context of filtering.

3 Judicious model errors in filtering or data assimilation

Can simple models incorporate non-Gaussian features of turbulent dynamical systems yet have the ad-
vantage of cheap computational overhead for filtering turbulent dynamical systems from sparse observa-
tions? A key feature of turbulence is bursts of energy across multiple scales with intermittent instability
and random forcing. Stochastic Parameterization Extended Kalman Filters (SPEKF) have been intro-
duced and analyzed recently (Gershgorin et al. (2010a,b); Majda et al. (2010); Majda and Harlim
(2011)) as computationally cheap algorithms which make judicious model errors which retain high fil-
tering skill for complex turbulent signals (Harlim and Majda (2010); Keating et al. (2011); Branicki et
al. (2011); Majda et al. (2010)). For example, aliasing is usually viewed as a bad feature of numerical
algorithms; in the present context, judicious use of aliasing yields stochastic superresolution (Majda et
al. (2010); Keating et al. (2011); Majda and Harlim (2011)).

The basis for the SPEKF algorithms is the following system for the complex scalar partially observed
turbulent signal u (the reader can think of a Fourier amplitude of turbulence at a given spatial wavenum-
ber) coupled with stochastic additive forcing and multiplicative damping/instability coefficients, b,γ ,
which are learned “on the fly” from the observed turbulent signal

(a) du(t) =
[
(−γ(t)+ iω)u(t)+b(t)+ f (t)

]
dt +σudWu(t),

(b) db(t) =
[
(−γb + iωb)(b(t)− b̂)

]
dt +σbdWb(t),

(c) dγ(t) =−dγ(γ(t)− γ̂)dt +σγdWγ(t),

(16)

where Wu,Wb are independent complex Wiener processes with independent components and Wγ is a real
Wiener process. There are nine parameters in the system (16): two damping parameters γb, dγ , two
oscillation frequencies ω and ωb, two stationary mean terms b̂ and γ̂ and noise amplitudes σu,σb,σγ ; f
is a deterministic forcing. The advantage of the equations in (16) is that they have non-Gaussian dynam-
ics but nevertheless exactly solvable first and second-order statistics, so they are readily implemented
practically in a filtering algorithm and avoid linear tangent approximations which are dangerous when
filtering (hidden) instabilities (Branicki et al. (2011)). The equations in (16) have rich statistical behav-
ior in a variety of regimes and this complex behavior can be utilized to test the filter performance of a
wide variety of Gaussian filter approximations (Branicki et al. (2011)). Such models are also useful as
an unambiguous test bed for all of the issues of prediction and model error discussed in section 2.

The systematic approach of making judicious model errors in filtering or data assimilation for turbulent
dynamical systems in order to avoid the “curse of dimension” and “curse of ensemble size” requires
the blending of concepts from stochastic turbulence theory, numerical analysis of PDE’s, and Kalman
filtering. A survey of the approach is found in Majda et al. (2010) and there is a recent introductory text
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Majda and Harlim (2011) suitable for first and second year graduate students, as well as researchers,
which develops and applies these concepts systematically to turbulent dynamical systems; this text also
includes extensive discussion, numerical examples, and comparisons with finite ensemble Kalman fil-
tering as well as recent attempts to do particle filtering. The recent paper Harlim and Majda (2010)
reports high skill for the SPEKF algorithms with low computational overhead for the recovery of turbu-
lence in baroclinic instability from sparse observations for both atmospheric and oceanic regimes of the
two-layer model; in contrast Harlim and Majda (2010), there is very high filtering skill comparable to
SPEKF of the finite ensemble transform methods at much higher computational cost for the atmospheric
regime but extremely poor skill of the finite ensemble methods in the ocean regime where the underlying
dynamics are stiff due to the small Rossby deformation radius. The challenging problem of recovering
turbulent heat fluxes in the ocean from coarse satellite altimetry measurements (Keating et al. (2011))
is studied through computationally inexpensive “stochastic superparameterization” SPEKF algorithms
Majda et al. (2010); Majda and Harlim (2011) with significant filtering skill in prototype two-layer test
problems for both low latitude and high latitude regimes. The filtering skill of the SPEKF algorithms
for recovery of turbulent tracers and their statistics from partial observations is discussed completely in
Gershgorin et al. (2011) for the test models from section 2.
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