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Direct 4D-Var assimilation of all-sky radiances. Part I: Implementation

Abstract

This paper describes a new radiance assimilation scheme formicrowave imager observations which unifies
the treatment of clear-sky, cloud and precipitation-affected situations, giving an ‘all-sky’ approach. The
previous approach assimilated radiances in clear skies andretrievals of total column water vapour in clouds
and rain. In March 2009, the new approach became operationalin the Four-Dimensional Variational As-
similation (4D-Var) system of the European Centre for Medium-Range Weather Forecasts. This approach
employs moist physics parameterizations and a full multiple scattering radiative transfer model in the ob-
servation operator for all microwave imager observations.Observation operator accuracy, observation error
definition and bias correction, basic observational impact, 4D-Var linearity and stability as well as compu-
tational cost are described. Because of careful quality control and relatively large observation errors, the
all-sky system produces a weaker observational constrainton moisture analysis than the previous system.
However, in single-observation experiments where the observations are given the same weight as before,
the all-sky system is able to produce 4D-Var analyses that are closer to the observations than the previous
approach. Despite the nonlinearity of rain and cloud processes, 4D-Var minimises successfully through the
use of an incremental technique. Overall the quality of the 4D-Var minimisation, in terms of number of
iterations and conditioning, is unaffected by the new approach.

1 Introduction

Today’s forecasting models operate at 15-25 km on global scales, and 1-3 km on regional scales, with an
unprecedented accuracy of temperature and wind forecasts but still limited accuracy when forecasting precip-
itation. The spatial scale at which numerical models exhibit acceptable precipitation forecast skill is much
coarser than the nominal model resolution and even that skill is highly dependent on how localised the rain
structures are (Roberts and Dean, 2008).

In global Numerical Weather Prediction (NWP) systems, satellite observations provide 90-95% of the actively
assimilated data. However, over 75% of satellite observations are discarded due to cloud contamination and
unknown land, snow and sea-ice surface emissivity. Cloud-affected data is difficult to deal with because of
the limited accuracy of moist physics parameterizations innumerical models and the need to model radiative
transfer through clouds and precipitation. Modern data assimilation approaches such as Four Dimensional
Variational Assimilation (4D-Var) and ensemble methods are geared towards clear-sky data. In particular, the
modelling of dry processes and their error characteristicsis much better developed than for moisture and cloud
processes.

Over the last 20 years, the assimilation of precipitation has been developed from physical initialisation (Krish-
namurtiet al., 1984) to four-dimensional variational assimilation schemes (e.g.̌Zupanski and Mesinger, 1995).
Rainfall observations are assimilated at a number of operational centres, with Japan Meteorological Agency
(JMA) assimilating ground-based radar data into a regionalmodel using 4D-Var (Tsuyukiet al., 2002) and the
National Centre for Environmental Prediction (NCEP) assimilating satellite retrievals into a global model using
3D-Var (Treadonet al., 2002). At the European Centre for Medium-Range Weather Forecasts (ECMWF), the
assimilation of rain-affected microwave radiances becameoperational in 2005 (Baueret al., 2006a,b). The
latter represented the first global 4D-Var system in which rain observations were routinely assimilated.

Errico et al. (2007) summarise the most important issues related to the assimilation of cloud and precipitation
observations and conclude that since there is very little experience with data assimilation of observations related
to moist processes, much fundamental evaluation of suitability and performance of existing data assimilation
systems will have to be performed. One prominent problem is the non-linearity (and non-continuity) of models,
i.e. the sensitivity of the parameterizations to input parameter perturbations is strongly state dependent. In the
case of strong non-linearities, data assimilation may produce erroneous analysis increments in model state

Technical Memorandum No. 618 1



Direct 4D-Var assimilation of all-sky radiances. Part I: Implementation

variables. This in turn may affect balance and stability. Another problem is the lack of investigation into
observation and background errors in cloudy and rainy situations.

In an idealised modelling framework, Vukicevic and Posselt(2008) evaluated the dependence of the data assim-
ilation solution on model non-linearity (and non-monotonicity) and emphasised the risk of finding non-unique
solutions (i.e. non-optimal analyses). This risk is greatly increased if model errors are significant but it can be
decreased by the cumulative impact of independent observations. An explicit test of the correspondence be-
tween non-linear and linearised model physics has been performed by Ameraultet al.(2008) with a meso-scale
model. They concluded that the tangent-linear approximation was sufficiently accurate for forecasts up to 1
hour. For global models this range and therefore the assessment of the validity of the tangent-linear approxima-
tion is more complicated due to the general use of different model resolutions and time steps as well as different
physical parameterizations in outer-loop (non-linear) and inner-loop (linearised and regularised) calculations
employed at most operational centres (Anderssonet al., 2005).

Observation and background errors are difficult to quantifydue to the complexity of the processes involved.
Also the errors may be strongly state dependent and may not berepresented by general Gaussian statistics.
Observation (operator) errors are mainly driven by the representativeness error and the fundamental assump-
tions used in radiative transfer (RT) modelling (Amerault and Zou, 2003). The representativeness errors relate
to the spatial representation of sub-grid-scale variability in the model versus that of observation. Often, for
computational performance reasons, very simple parameterizations have to be used, e.g. defining an effective
cloud/precipitation coverage fraction that minimises radiative transfer errors when validated against observa-
tions (Geeret al., 2009).

Moreauet al. (2004) and Baueret al. (2006a) have shown that for global models it is preferable toassimilate
microwave radiances rather than rain rates because:

• the observation operator always produces non-zero gradients (in the absence of signal saturation) whether
a scene contains clouds or not;

• an observation operator which combines moist physics and radiative transfer model behaves more con-
tinuously over its dynamic range than does moist physics alone;

• the statistics of observed-minus-modelled radiance departures have mostly Gaussian characteristics, and
this also facilitates bias correction;

• observation operator errors can be derived from spatial departure covariance statistics.

The background error definition depends on the control variables used in the assimilation scheme. In earlier
studies on 1D-Var retrievals of hydrometeor profiles from radiance observations where the observation operator
consisted only of the RT model, hydrometeor background errors could be calculated from the state-dependent
temperature and humidity background errors to which the moist physics operator was applied (Moreauet al.,
2003). The temperature and humidity background errors, however, did not take account of the presence of
clear skies or cloud. Amerault and Zou (2006) derived background error statistics at the meso-scale from the
statistical difference between parameterization schemesassuming that those represent realistic parameterization
errors. The main challenge here is to define a simple yet accurate scheme that allows a state-dependent error
definition in an operational environment. In the future, ensemble data assimilation may be one way to obtain
more realistic background errors than currently available. These methods are currently being developed and
promise to provide better statistics and a more balanced weight between model forecasts and observations in
the analysis.

This paper and its companion (Geeret al., 2010b) describe improvements in the use of microwave satellite
observations in the ECMWF forecasting system. Since March 2009, the operational system has assimilated
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all-sky microwave radiances directly into 4D-Var. The current paper describes the rationale behind the all-sky
approach and the technical details of the implementation. It examines the system using single-observation
test cases and looks at issues such as the non-linearity of the observation operator, and the convergence and
numerical performance of the full system. The second paper examines the use of all-sky observations in the
context of the full ECMWF operational system by looking at analysis and forecast skill.

2 Assimilation system

2.1 Overview

Rain and cloud assimilation is incorporated within the ECMWF’s 4D-Var system (Rabieret al., 2000), along-
side the assimilation of many other conventional and satellite observation types. 4D-Var seeks to make the best
estimate or ‘analysis’ of the atmospheric statex(t0) at timet0 by minimising a cost-function:

J[x(t0)] =
1
2
[x(t0)−xb(t0)]

TB−1
0 [x(t0)−xb(t0)]

+
1
2

n

∑
i=0

dT
i R−1

i di (1)

For full definitions see Ideet al. (1997); for more explanation see Kalnay (2003). A first guess(FG) model
forecastxb(t0) provides a background. Observations are distributed within a time window (in our case 12 hours)
divided inton discrete timeslotsi. In each timeslot, observationsyo

i are compared to the corresponding model
estimates to calculate the ‘departure’ of model from observation:

di = yo
i −Hi[Mi [x(t0)]] (2)

Hi is a non-linear ‘observation operator’ that, for example, simulates observed brightness temperature (TB)
given input values from the atmospheric model.Mi[x(t0)] represents running the non-linear atmospheric model
from timestept0 to ti . The weighting between background and observations and thespreading of the obser-
vational information in space are determined by the choice of background and observation error covariance
matrices,B andRi .

It is useful to distinguish between the ‘control vector’, i.e. the part ofx(t0) that is varied in order to minimise
the cost function, and other atmospheric or surface state variables, which may either be held fixed or be derived
from the variables in the control vector. In the ECMWF system, the control vector contains only quantities
related to winds, temperature, moisture and surface pressure, i.e. there is no cloud or precipitation in the
control vector. Some other quantities, such as sea surface temperatures and surface parameters, are held fixed.
However, cloud and precipitation are derived from the clearatmospheric variables by the application of moist
physics operators as part of the atmospheric modelMi, and hence cloud and precipitation must still be optimised
in 4D-Var if cloud- or rain-affected observations are assimilated.

To make the cost function into an ‘easily’ soluble quadraticform, the non-linear operatorsHi andMi in Eq. 2
are replaced by tangent linear operatorsH andM, which are the matrices of the partial derivatives ofHi and
Mi. Whether the linear solution is valid depends on the validity of the tangent linear hypothesis, for example
for M:

Mi[x(t0)+ δx ] ≃ Mi[x(t0)]+Miδx, (3)

and similarly forH. for The cost function, once in quadratic form, can be minimised using an iterative algorithm
which, at each step, requires a calculation of the cost function and its gradient. Calculation of the gradient
requires the use of ‘adjoint’ operators, which are the transposesHT andMT.
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In practice, the basic version of the cost function is extended in various ways. Quality control is applied by
scaling the cost function according to each observation’s probability of gross error (Variational Quality Control,
VarQC; Ingleby and Lorenc, 1993; Andersson and Järvinen, 1998). The control vector is augmented to allow
the estimation of parameters for the correction of observation biases (Variational Bias Correction, VarBC; Dee,
2004; Aulignéet al., 2007).

ECMWF also use an incremental formulation for the minimisation (Courtieret al., 1994), based around a non-
linear ‘outer-loop’ update and a linearised ‘inner-loop’ minimisation. After each outer-loop, the linearisation
point about whichH andM are calculated is updated. The idea is that the linearisation point gets closer to
the eventual analysis and the tangent linear assumption becomes gradually more valid. The outer loop steps
are run with the atmospheric model using a spectral resolution of T799 (or sometimes T511 for computational
efficiency in our tests here). There are three runs of the inner-loop, all at a reduced resolution, the first at T95,
the second at T159, and the third at T255. We will explain these concepts in more detail later.

2.2 Observations

Microwave imagers typically have a number of channels between 10 GHz and 89 GHz. Outside of heavy
precipitation and cloud, the atmosphere is usually semi-transparent at these frequencies. Due to the difficulties
of modelling land surface emissivities and temperatures, we only use these observations over ocean surfaces.
Here, observed TBs are sensitive to the sea surface (skin temperature and wind speed) and the atmosphere
(water vapour, cloud and precipitation). The emissivity ofthe sea surface is typically much less than 1 and
so the surface typically provides a cool background againstwhich water vapour, clouds and rain show up as
warm emitters. However, at higher frequencies, TBs can decrease with increasing moisture or cloud, either due
to scattering from frozen hydrometeors or to the weighting function moving to higher, relatively cool parts of
the atmosphere. Microwave imagers use a conically-scanning technique where all observations have the same
zenith angle and (for a particular frequency) footprint size.

The ECMWF all-sky system uses observations from Special Sensor Microwave / Imager (SSM/I) and Advanced
Microwave Scanning Radiometer for the Earth Observing System (AMSR-E). SSM/I instruments have been
flown on the Defence Meteorological Satellite Program (DMSP) satellites from 1987 until the present day
(Hollinger et al., 1990). Here we use observations from DMSP-F13 and F15. SSM/I has seven channels
from 19 GHz through to 85 GHz, labelled by their frequency plus a ’v’ or ’h’ depending on their polarisation
(vertical or horizontal): 19v, 19h, 22v, 37v, 37h, 85v and 85h. AMSR-E (Kawanishiet al., 2003) provides
channels 7v/h, 10v/h, 19v/h, 24v/h, 37v/h and 89v/h, but here we avoid the 7 and 10 GHz channels due to
problems with our surface emissivity modelling at low frequencies and the 89 GHz channels since they are not
spatially co-registered with the lower frequency channels.

Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) and Special Sensor Microwave Im-
ager Sounder (SSMIS) were assimilated in the previous ECMWFsystem but to save computer resources, their
use has been temporarily discontinued (Sect. 6.3).

2.3 Observation operator

RTTOV-SCATT (Baueret al., 2006c) provides multiple-scattering radiative transfercalculations at microwave
frequencies as part of the RTTOV1 package (Eyre, 1991; Saunders, 2008). Scattering calculations are performed
using the delta-Eddington approach (Josephet al., 1976), which gives reasonable results when simulating the
radiances measured by microwave radiometers (Smithet al., 2002). Scattering parameters are pre-calculated

1Radiative Transfer model for Television Infrared Observation Satellite Operational Vertical sounder
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using Mie theory and tabulated as a function of frequency, temperature, and hydrometeor type and density. The
most important inputs to RTTOV-SCATT are the surface skin temperature and winds, and vertical profiles of
pressure, temperature, moisture, cloud liquid water and ice, rain and snow fluxes, and cloud cover. We use the
revised cloud overlap approach of Geeret al. (2009), which results in substantially more accurate cloudy and
rainy radiative transfer than with previous versions of RTTOV-SCATT.

3 Previous approach: 1D+4D-Var

The system that was implemented at ECMWF in June 2005 (Baueret al., 2006a,b) consisted of two stages.
First, SSM/I radiance observations were used to constrain aone-dimensional variational (1D-Var) retrieval of
total column water vapour (TCWV). Then, the TCWV was assimilated as a pseudo-observation in 4D-Var. This
was known as ‘1D+4D-Var’. Separately, clear-sky SSM/I observations were assimilated directly into 4D-Var.
Further developments to the 1D+4D-Var system were described by Geeret al. (2008) and in June 2008, rain
and cloud-affected observations from AMSR-E and TMI were included.

What distinguishes 1D-Var from an ordinary variational retrieval is (a) it uses the same background state and
temperature and moisture background errors as the 4D-Var and (b) the observation operator uses the same lin-
earised moist physics package as the 4D-Var. The control vector consists of temperature and moisture profiles.
Fixed information includes the background temperature andmoisture tendencies, latent and sensible heat flux
at the sea surface. With this as input, the observation operator consists of (i) linearised moist physics parame-
terizations (Tompkins and Janisková, 2004; Lopez and Moreau, 2005), which are used to derive the cloud and
precipitation profiles and (ii) RTTOV-SCATT, which is used to calculate the microwave radiances. An advan-
tage of doing a 1D-Var retrieval is that it allows an additional step of quality control before assimilation into
4D-Var.

One of the main recent improvements was the correction of a bias in the linearised moist physics parameteriza-
tions, which were producing excessive rainfall compared both to the non-linear parameterization on which they
were based, and compared to independent rain observations (Geeret al., 2008). This highlights the importance
in rain and cloud assimilation of using a model that is able toaccurately predict rain and cloud amounts.

Geeret al. also noted a number of limitations of the 1D+4D-Var approach. First, the TCWV pseudo-observation
was not bringing that much new information: much of the 4D-Var analysis humidity increment is inferred
indirectly from other observations, such as temperature-sounding radiances. The unique information content of
the microwave imager observations was in their cloud and rain information. Rather than discard this, it would
be better to make use of it in a direct 4D-Var assimilation of radiances. Second, the separate treatment of clear-
sky and cloud/rain-affected observations created an unbalanced sampling. Cases with clear observations but a
cloudy first guess went through the clear sky route, using clear-sky radiative transfer in the observation operator.
This meant that (a) there was quite a large sampling bias in the 1D+4D-Var stream and (b) an opportunity was
being missed to correct the erroneous FG cloud when clear skies were observed. An all-sky approach was
proposed, where the treatment of clear and cloud-affected cases is unified in a single data stream with a single
observation operator. This is what is implemented in this paper.

One final problem was that near saturation the background error definition tends to penalise positive moisture
increments more strongly than negative increments. This means that the assimilation of rain and cloud affected
data causes a net drying effect on the moisture analysis. However, this issue is not addressed by the new system,
and remains a problem (Geeret al., 2010b). In the future, it can only be overcome by extending the 4D-Var
control vector and background errors to include condensates.
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4 All-sky approach

4.1 Introduction

The all-sky approach is best introduced by explaining how itdiffers from the treatment of clear-sky radiance
data. At ECMWF, the following steps usually take place:

1. Observations are thinned by scan-line and scan-position;

2. Model fields are interpolated to observation locations;

3. Observations are simulated using a clear-sky radiative transfer model;

4. A bias-correction is applied, based on the VarBC estimatefrom the previous analysis;

5. Cloud-affected observations are removed;

6. A FG departure check (BgQC) is performed for quality control;

7. Data is further thinned by time slot onto a latitude-longitude grid to avoid spatial and temporal correlation
of observation (operator) errors;

8. Observation errors are pre-defined and remain constant throughout the analysis. They are not model-state
dependent.

9. VarQC operates through the minimisation for further quality control;

The all-sky approach is completely different except for steps 4, 6, 7 and 9.

There is no spatial interpolation in the all-sky assimilation. Interpolating fields from the moist physics model
output to observation locations was considered inappropriate due to the large horizontal variability and the po-
tential loss of physical consistency among profiles of temperature, humidity, hydrometeor contents and surface
parameters. Consistency is only guaranteed at each model grid point. The difficulty comes particularly from the
high sensitivity of convection parameterizations to inputperturbations. In the all-sky approach, the radiative
transfer model (and its tangent-linear and adjoint) is run only at grid point locations. In order to reduce the
geographical mismatch to a minimum, we only use observations that are less than 10 km from the grid points,
and (for each sensor) only one observation per grid point. Hence, there is no need for further thinning or in-
terpolation, so steps 1 and 2 are eliminated. As previously mentioned, step 3 now uses a scattering radiative
transfer model to allow computations in cloud and precipitation.

The all-sky treatment unifies clear-sky and cloud-affectedobservations and has a single observation operator.
Thus, there is no longer any cloud detection involved, eliminating step 5. This gives the major advantage of a
balanced sampling. Figure 1 shows histograms of FG departures for the seven channels on SSM/I. Individual
curves have been drawn for those data samples where both model and observations contain clouds (dotted,
37%) or only clear-sky (solid, 35%), where the observationscontain clouds but the model is cloud-free (dash-
dotted, 11%) and vice versa (dashed, 17%). Figure 2 shows thecorresponding geographical distribution of the
samples.

The clear-sky approach allows the sum of the solid and dashedsamples into the analysis, the latter being
about half the size of the former. The geographical distribution suggests that many areas in which cloud
is different between observations and model are located near fronts and convective systems that are slightly

6 Technical Memorandum No. 618



Direct 4D-Var assimilation of all-sky radiances. Part I: Implementation

Figure 1: Histograms of SSM/I first-guess radiance departures for samples where both model and observations contain
clouds (dotted) or only clear-sky (solid), where the observations contain clouds but the model is cloud-free (dash-dotted)
and vice versa (dashed) for channels 19v (a), 19h (b), 22v (c), 37v (d), 37h (e), 85v (f), 85h (g). Data drawn from a
12-hour assimilation on 15 September 2007 00 UTC.
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Figure 2: Geographical distribution of SSM/I data from a 12-hour assimilation on 15 September 2007 00 UTC for
samples where both model and observations contain clouds (blue) or only clear-sky (yellow), where the observations
contain clouds but the model is cloud-free (red) and vice versa (green).

misplaced by the model but where the cloud extent is well represented by the model. In those cases, the clear-
sky radiance assimilation would introduce increments onlyon the side of the system where the observations
are clear. However, the all-sky system is able to develop model clouds where there are none in the first guess
and to dissipate model clouds if there are none in the observations. In total, 65% of observations are affected
by cloud either in the model or observation, and many of the remaining 35% of supposedly clear observations
may be affected by small amounts of cloud.

Figures 1a-g also suggest that the biases in radiance space are small for the samples where both model and
observation agree in terms of cloud. This suggests that bothclear-sky and cloud observation operators perform
well across all SSM/I channels and that the bias correction is correctly adjusting for any remaining systematic
differences on a global basis.

Steps 4 (bias correction) and 6 (FG departure check) are retained for the all-sky system and are described in
Secs. 4.3 and 4.4 respectively. In the all-sky system, it is clear that observation errors are likely to be larger in
rain and cloud affected areas, due to the increased difficulty of modelling these phenomena. Thus a completely
new approach to the definition of observation errors (step 8)is needed. This is described in Sec. 4.2. It is also
necessary for the first time to really consider the spatial representativeness of observations (Sec. 4.5).

4.2 Observation errors

Observation errors are allowed to vary through the minimisation and are scaled depending on: (a) the total
hydrometeor amount in the FG; (b) the distance of the observation from the nearest model grid point. From
previous work we know that observation errors are generallylarger in cloud and rain. The true instrument
noise is irrelevant here; it is representativity (or lack ofit) and observation operator error that is important. For
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Figure 3: (a) Histogram of observation errors for channel 37v, before inflation; (b) Histogram of the additional inflation
term, proportional to the square of the distance from the grid point ((r/rc)

2), which changes depending on the resolution
of the minimisation. Sample is all assimilated SSM/I observations at 00Z 22nd August.
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Figure 4: Map of SSM/I observations (squares), outer-loop T511 grid-points (dots) and final inner-loop T255 grid-points
(crosses). SSM/I observations are selected on the basis of being less than 10 km from the outer-loop grid-point, but only
every second grid-point is used, to help thin the data. Co-ordinates are latitude and longitude in degrees. The squares are
symbolic and do not represent the observation resolution.

example, the accuracy of scattering radiative transfer is typically lower than for clear sky (see e.g. Geeret al.,
2009, errors could be 10 times bigger in cloud). For each channel, a clear sky errorσ clr

o and a cloudy/rainy sky
errorσ cld

o are defined. The nominal observation errorσo,n is determined from:

σo,n = cσ clr
o +(1−c)σ cld

o (4)

but with the clear and cloudy errors providing upper and lower bounds:

σ clr
o < σo,n < σ cld

o (5)

Herec is the total column hydrometeor amount in the model, in kg m−2. This is the sum of cloud water path
(CWP), ice (IWP), rain (RWP) and snow (SWP). The model represents snow and rain in terms of fluxes, so the
densities needed to calculate RWP and SWP are derived using atransformation described by Geeret al.(2008).
The nominal error is allowed to vary through the minimisation, thus accounting for the potential generation and
dissipation of clouds. Figure 3a shows a typical histogram of nominal observation errors for channel 37v.

Observation errors for SSM/I were calculated as in Baueret al. (2006a) from spatial departure covariance
statistics and were defined in clear skies asσ clr

o = 3, 4.5, 4, 3.5, 4 K (19v, 19h, 22v, 37v, 85v) and in cloudy skies
σ cld

o = 3, 6, 3, 150, 300 K. At high frequencies we artificially inflated the observation error in cloudy situations
to prevent assimilation. This is because, compared to lowerfrequencies, there is increasing sensitivity to frozen
precipitation, which is less well modelled by the moist physics parameterizations. Also, the optical properties
of frozen hydrometeors are less well known, making radiative transfer more difficult. For this reason Bauer
et al. (2006a) only assimilated channels at 19.35 and 22.235 GHz inthe 1D+4D-Var system. Channels 37h and
85h were found to be too strongly affected by surface emissivity modelling biases and were therefore excluded
in both clear and cloudy skies. The smaller error at 22.235 GHz in clouds is explained by the much reduced
dynamic range of radiances due to water vapour absorption. Note that it is assumed that errors are spatially and
spectrally uncorrelated.

To the nominal observation error is added an ‘inflation term’to account for the distancer between the obser-
vation and the model grid-point. This is needed because the model resolution changes at each inner-loop of
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4D-Var and is different from the outer-loop resolution. This means thatr will also change (e.g. Fig. 4). We
assume that asr increases, the observation becomes less representative ofthe grid-box in which it is being
assimilated. The nominal observation error is inflated quadratically so that the final observation error is:

σo = σo,n +(r/rc)
2. (6)

Here,rc =10 km is a critical radius, at which the inflation term is 1 K.

The inflation of error with distance means that while the samenumber of observations is retained throughout the
minimisation, the observation weight is adjusted. When at higher model resolution the observations are more
likely to be close to a grid-point, so the observational weight increases. Figure 3b shows histograms of the
inflation term at the three different minimisation resolutions. Observations are typically given very large errors
during the first and second minimisations. This reduces the risk of too strong increments in the initial coarse-
resolution minimisations where the tangent-linear approximation with active moist physics is most likely to be
false.

4.3 Quality control

It is important to screen out bad or outlying observations which might otherwise significantly degrade the
quality of the analysis, and this process is known as qualitycontrol (QC). With rain and cloud-affected obser-
vations, QC is challenging, since it is perfectly normal to,for example, find a situation with a rainy FG and a
clear-sky observation. In such cases, FG departures could easily be as large as 50 K. In a traditional clear-sky
QC approach, a large FG departure indicates a bad observation, which would be rejected. In our initial im-
plementation of the All-Sky approach, this problem remains, because we apply the standard Background QC
(BgQC Järvinen and Unden, 1997) which actually does rejectsuch ‘valid’ observations.

BgQC rejects observations where the FG departure is greaterthan a factorα times its estimated error standard
deviation, i.e:

d > α
√

σ2
o + σ2

b . (7)

Here,d represents one scalar element from the departure vectordi (Eq. 2). This check is applied during the
FG trajectory. For all-sky observations,σo is the observation error (Eq. 6).α is set to 2.5, in common with
many other observation types.σb is an estimate of the background error in observation space.This is based
on the temperature field and is of order 1 K, which is extremelyunrealistic in cloudy and/or rainy areas. In
further work we will make this more realistic, but for the moment, this very smallσb is used to provide an
overly stringent QC of the observations. This has the positive benefit of helping to avoid cases with strong
nonlinearity, and represents a conservative initial approach to using the cloud and rain affected observations.

As mentioned earlier, a second procedure (VarQC, Anderssonand Järvinen, 1998) operates during the 4D-Var
minimisation. This is applied to most observations in the ECMWF system, including all-sky observations.
VarQC applies a weight to each observation in the minimisation according to how well it agrees with surround-
ing data, as represented by the evolving analysis state during the minimisation. Observations are never truly
‘rejected’, but merely downweighted to the point where theyare no longer relevant. As well as losing weight,
observations may regain it again if the analysis (based mostly on other observations) starts to agree with the
observation. Technically, this method is implemented by modifying the observation error distribution assumed
in 4D-Var from a pure Gaussian to a Gaussian plus a constant representing the possibility of erroneous data.

Figure 5 shows histograms of SSM/I channel 19v FG departuresfor one analysis, divided into the samples
that pass QC checks and those that are rejected. About 20,000observations pass QC. BgQC acts essentially
to reject all observations with FG departures greater than about 10 K: this is about 800 observations. The
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Figure 5: Histogram of SSM/I channel 19v FG departures from one analysis cycle, 00Z on 1st March 2009, showing the
numbers that were rejected by BgQC or actively assimilated (thin line); rejected by BgQC (thick line); rejected by VarQC
(dashed line).

observations rejected by BgQC are almost exclusively associated with rain and cloud systems, where the result
of disagreement between observation and model can be large in TB terms. Observations which pass BgQC
may still be affected by VarQC. Observations are flagged as ‘failed’ if they have been downweighted by at least
75%. VarQC ‘rejects’ a further 100 observations according to this measure. Again, these rejections tend to be in
rainy and cloudy areas. Overall, our QC approach eliminatesa large proportion of the observations in strongly
rainy and cloudy areas. However, 95% of observations are still being used, which is a much larger proportion
than in traditional ‘clear sky’ microwave imager assimilation (roughly 50% at ECMWF were considered clear).
Hence, we can still justifiably refer to our approach as an ‘all-sky’ system.

We have so far only considered channel 19v, where the observation error is always quite small. The channel
19v results are valid also for 19h and 22v, where the observation error is similar. Channels 37v and 85v are
given much larger observation errors in rain and cloud. Hence, BgQC does not reject many rain and cloud
affected observations for these channels, but the high errors mean these observations have little impact.

4.4 Bias correction

Bias correction in the all-sky system is done by VarBC (Dee, 2004; Aulignéet al., 2007), which estimates bias
correction coefficients as part of the 4D-Var assimilation.For the all-sky implementation we used the same
predictors as the original clear-sky assimilation of microwave imagers. These are a constant, skin temperature,
TCWV, surface wind speed, plus a 4-order polynomial of the scan position that accounts for scan biases. The
second part of this paper (Geeret al., 2010b) finds that globally, the VarBC system is capable of controlling
the bias. However, at a local scale there are many biases associated with cloud and precipitation systems. To
correct these we would need to add predictors based on the cloud or rain amount. For the first implementation
of the All-Sky approach, we judged that these uncorrected biases could be tolerated, and they are generally
much smaller than were found in the 1D+4D-Var system. This isdue both to the more-accurate moist physics
used in 4D-Var, and recent improvements in the treatment of cloud fraction in the radiative transfer model (Geer
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et al., 2009). Nevertheless, improving the bias correction is a high priority for the future.

4.5 Spatial representativeness

Representativity issues are largely neglected in clear skyassimilation, but in cloud and rain they become much
more important. The SSM/I field of view (FOV) is 45 km× 70 km at 19 GHz and 25 km× 35 km at 37 GHz.
The model grid box size is roughly 25 km× 25 km at T799. These are all close enough that the SSM/I field
of view and model grid-boxes are assumed to be equivalent. This appears to have worked well both for the
1D+4D-Var rain assimilation and for the new system.

AMSR-E has a much smaller field of view than SSM/I, being 16 km× 27 km at 19 GHz and 8 km× 14 km at
37 GHz. Using AMSR-E in the 1D+4D-Var system we ignored this and found no problems in doing so. We tried
to do the same in the all-sky 4D-Var system, but we found forecast score degradations at short ranges (T+12
to T+48) in trade cumulus areas in the N. and S. Atlantic and inthe Pacific. These areas can exhibit scattered
cloudy, rainy and clear areas with variations on scales thatare too small to be represented by the model, let
alone forecast accurately. It appeared that by attempting to assimilate some of this variability, we were bringing
unwanted noise into the analysed moisture and temperature fields. Hence we introduced a ‘superobbing’ of
AMSR-E data.

Superobbing, as implemented here, simply averages the nearest 10 observations to the outer-loop grid point,
with no observation allowed to be further than 20 km from the grid point. The AMSR-E superob is intended
to have a spatial resolution closer to that of SSM/I. We foundthat when superobbing was implemented, the
forecast degradations in trade cumulus areas were largely removed.

We are aware that even with the superobbing of AMSR-E, our treatment of representativity is currently quite
superficial. Improvements in this area may bring substantial benefits to the system and we aim to revisit this in
the future.

5 Single-observation tests

5.1 Introduction

To illustrate the way the new system works, we can run a full 4D-Var analysis, but assimilate only one obser-
vation. The FG is the same in all cases. We present the following examples:

• A: Convection in the inter-tropical convergence zone (ITCZ):model has too much rain compared to the
observation (Tab. 1);

• B: Midlatitude cold front: model has too little moisture and cloud (Tab. 2).

• C: Convection in the ITCZ: a near neighbour to case A, but chosento illustrate a situation with poor min-
imisation quality. No table is given, but the case is examined in Sec. 5.3. Coordinates: 1.9◦N, 24.2◦W.
Time: 18:47 Z 30 Sep 2007.

For both FG and analysis, the tables list the departures (Eq.2) and the values of TCWV and total column
hydrometeor amount at the observation point and time. Each case has been run with three different assimilation
methods:
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Table 1: Single-observation case A (1.9◦N, 24.2◦W, 18:47 Z 30 Sep 2007.).
FG Analysis

All-sky-1 All-Sky-2 1D+4D-Var
Departures [K]
19v -6.9 -5.7 -1.5 -1.8
19h -12.6 -10.4 -2.1 -2.7
22v -3.3 -2.7 -1.5 -1.8
37v -9.3 -7.3 -8.4 -12.4
37h -26.8 -22.3 -18.6 -26.4
85v 14.6 14.8 4.3 4.8
85h 9.7 10.8 0.2 -4.5
Total columns [kg m−2]
TCWV 59.5 59.2 57.7 58.0
CWP 0.19 0.17 0.21 0.28
IWP 0.19 0.16 0.10 0.12
RWP 0.35 0.32 0.18 0.17
SWP 1.07 1.06 0.22 0.23

Table 2: Single-observation case B (40.6◦N, 52.6◦W, 20:40 Z 30 Sep 2007.)
FG Analysis

All-sky-1 All-Sky-2 1D+4D-Var
Departures [K]
19v 7.6 7.4 3.3 5.6
19h 10.4 9.9 2.3 6.5
22v 9.8 9.1 0.8 5.2
37v 9.3 9.1 6.4 8.1
37h 16.2 15.7 8.8 13.0
85v 10.4 10.4 8.8 10.3
85h 22.2 21.5 11.3 17.0
Total columns [kg m−2]
TCWV 17.3 17.7 23.6 18.9
CWP 0.01 0.01 0.03 0.02
IWP 0.19 0.19 0.23 0.23
RWP 0.00 0.00 0.00 0.00
SWP 0.45 0.49 0.80 0.67
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• All-sky-1: Uses the exact operational implementation;

• All-sky-2: As above, but ‘unrestricted’ - inflation of observation error with distance (Eq. 6) has been
turned off, as has quality control (both BgQC and VarQC);

• 1D+4D-Var: Uses the previous operational system, but again quality control has been turned off. The
departures given in Tabs. 1 and 2 are based on 4D (not 1D) modelcalculations, for consistency with the
All-Sky experiments. Bias corrections from the All-Sky-1 approach have been applied to these depar-
tures, since the 1D-Var bias corrections would not be appropriate.

5.2 Analysis quality

In the ITCZ example (case A, Tab. 1), FG TBs are too high compared to observations and there are negative FG
departures in channels 19v to 37h. Thus the model has too muchTCWV, cloud or rain. In All-Sky-1, All-Sky-2
and 1D+4D-Var approaches, the nominal observation errors for channels 19v, 19h and 22v are set to 3, 6 and
3 K respectively. 1D+4D-Var does not use the higher frequency channels at all. In the all-sky approach, the
presence of heavy precipitation and cloud in the FG leads to observation errors for the 37 GHz and 85 GHz
channels greater than 100 K, meaning these channels are effectively unused (see Sec. 4.2). In no case does
BgQC reject the observation. Hence, observation errors andchannel usage are identical in all three methods,
except that All-Sky-1 adds an inflation term for the observation error (Eq. 6).

In the analysis, all three approaches reduce the departures, but in the new operational approach (All-Sky-1), the
reduction is not large. The impact of the observation is muchlarger in All-Sky-2 and the analysis departures
become quite small. A good fit to observations has been achieved by decreasing water vapour in the model
(TCWV goes from 59.5 to 57.7 kg m−2) and rain (RWP goes from 0.35 to 0.18 kg m−2). This has been
achieved by reducing the strength of convection in this profile. Figures 6b, c and d show how the vertical
profiles of humidity, cloud and rain have been changed at the observation point. Snow is also reduced (SWP
goes from 1.07 to 0.22 kg m−2) and the impact of this is seen in the high-frequency channels (85v and 85h)
where scattering from falling snow typically depresses TBs. Here, positive FG departures indicate excess snow,
which is then corrected in the analysis. To achieve reduced convection at the observation time, the 4D-Var
analysis has adjusted moisture in the lower and mid troposphere at the start of the analysis window (09Z,
Fig. 6a).

The lack of observational impact in the All-Sky-1 approach comes from using much larger effective observation
errors than in All-Sky-2. As the inner loop resolution increases from T95 to T159 to T255, the distance of this
observation from the nearest model grid point is 99, 65 and 39km respectively. As a result, observation error is
inflated by 98.2 K, 41.7 K and 15.6 K respectively. It is clear that very little weight will be given to an individual
observation in this case.

The 1D+4D-Var approach produces a very similar result to All-Sky-2. One justification for moving to a 4D-Var
approach was that assimilating just a TCWV pseudo-observation might not be sufficient to change the cloud
and rain fields appropriately. For this case at least, the 1D+4D-Var approach is perfectly effective, and directly
assimilating TBs provides little improvement. In fact, because of the error inflation with distance in All-Sky-1,
a single observation will typically have much lower weight in the new system than in the old. However, in the
normal operational context, this 1D-Var observation wouldactually have been removed by quality control, due
to an excess of falling snow compared to rain (Geeret al., 2007).

Case B (Tab. 2) illustrates a midlatitude frontal situation. The front is indicated by a band of high TCWV
running from SW to NE across a section of the N. Atlantic. Low TCWV to the NW indicates cold, dry air
behind the front. At the observation point, the FG has too little water vapour and cloud, resulting in positive
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18Z Cloud water increment
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Figure 6: Single-observation case A: Vertical profiles of humidity and cloud water increments at the observation point:
(a) Specific humidity at 09Z; (b) Specific humidity at 18Z; (c)cloud water mixing ratio at 18Z; (d) Rain flux at 18Z. Cloud
and rain increments at 09Z are so tiny that they are not worth showing. Thin solid line: All-Sky-1; Thick solid line:
All-Sky-2; Dot-dash line; 1D+4D-Var
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Figure 7: Single-observation test case B, using the All-Sky-2 approach: (a) 09Z and (b) 21Z wind increments at 670 hPa
(white arrows) over FG sea-level pressure (black lines, 5 hPa contour spacing) and TCWV (coloured contours, blue =
low; red = high); (c) 21Z TCWV increments (red is an increase;blue is a decrease; extremes are approximately +2kg
m−2 and -1kg m−2) over FG TCWV (black lines, 4 kg m−2 contour spacing; this is the same field that is shown in panel
b). Colour bars have been omitted in order to simplify the diagram. X marks the location of the assimilated observation,
which was valid at 20:40Z. 09Z TCWV increments are so small that there is no point showing them: the principal change
at 09Z is in the winds, temperature and pressure .

Technical Memorandum No. 618 17



Direct 4D-Var assimilation of all-sky radiances. Part I: Implementation

FG departures. TCWV and CWP are increased in the analysis so that modelled TBs become higher and the
analysis departures become smaller. Again, observation impact is small in All-Sky-1 and it is necessary to turn
off the observation error inflation (All-Sky-2) in order to see the maximum potential impact of the observation.
However, this time 1D+4D-Var has less impact than All-Sky-2, which may happen because a direct radiance
analysis must adjust both cloud water and humidity to fit the observations, whereas in 1D+4D-Var, the analysis
only needs to adjust the humidity.

Figure 7 shows the increments in the All-Sky-2 analysis. In contrast to the tropical case (A), where increments
were localised and limited to the moist variables, case B involves changes to the large-scale wind fields and
(not shown) temperature and pressure. Winds near the observation location are roughly NW (not shown). Wind
increments act to decrease the wind speed by roughly 1 m s−1 at the beginning of the assimilation window
(panel a), thus slowing down the progress of the front and increasing the humidity at the observation time and
location (panels b and c). There is virtually no humidity increment at the beginning of the assimilation window.
Because the background error formulation includes a constraint to ensure that any increments are in geostrophic
balance, the local decrease in the wind field is associated with a dipole change in the pressure fields, filling in
the low pressure area and reducing the high pressure area (not shown). Another result is that these pressure
changes are also associated with an increase in wind speed onthe outside of the dipole.

TCWV changes near the observation time (Fig. 7c) are associated with the steep gradients in the TCWV field.
Where the progress of the front has been retarded, this results in an increase, and where it has been speeded
up, this results in a drop in TCWV. There are smaller decreases in the TCWV on the forward side of the front
where the TCWV gradient is steep. The ‘tracer effect’ of assimilating observations sensitive to humidity has
also been shown by e.g. Peubey and McNally (2009).

In summary, the single-observation tests show that direct 4D-Var assimilation is able to adjust dynamical, mois-
ture and cloud and precipitation fields in order to match the all-sky observations. The inflation of observation
error with distance from the grid points means that the influence of any single observation will be quite low
in the All-Sky-1 approach. Nevertheless, when all microwave imager observations are assimilated in the full
system, the dynamical impact matches the previous approach, and the humidity constraint is roughly half as
strong (Geeret al., 2010b).

5.3 Minimisation quality

Single-observation tests also help illustrate the performance of the 4D-Var minimisation in the presence of
the strong nonlinearities associated with cloudy and rainyobservations. As we will see, incremental 4D-Var
generally works well.

First we must outline how the incremental method is implemented at ECMWF. The outer-loop starts with a
run of the non-linear forecast model from the background state to giveMi[xb(t0)], the state about which the
linearisationsH andMi are calculated. The inner loop is a variational minimisation which solves a linearised
version of the cost function shown in Eq. 1. The inner loop solution is taken as the starting point for the
next non-linear outer loop run. This is usually expressed interms of an incrementδx which is added to the
original background state so the new outer loop calculatesMi[xb(t0)+ δx]. Whether the linear solution is valid
depends on the validity of the tangent linear hypothesis (Eq. 3). Typically, the smallerδx, the more valid this
assumption. The idea of the incremental method is that the non-linear ‘outer-loop’ state becomes closer to
the solution of the non-linear cost function and each successive incrementδx is smaller than the last. In the
operational system there are three steps in the outer loop and hence also three inner loop minimisations.

We will examine only the All-Sky-2 single-observation tests here, i.e. those performed without the usual
restrictions of observation error inflation and QC, known asan ‘unrestricted’ approach (see Sec. 5.1). Hence,
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Figure 8: Channel 19v first guess departures through the 4D-Var minimisation for single-observation test cases A, B
and C using the All-Sky-2 approach. Squares indicate departures calculated using the nonlinear T511 forecast model in
the ‘outer loop’; crosses indicate the departure at the end of each minimisations or ‘inner loop’, calculated using the
incremental method. We do not show the intermediate departures during the inner-loop minimisation; the straight solid
lines are simply illustrative.
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the observations have a much larger impact than they usuallywould.

Figure 8 follows the channel 19v departures through the minimisation process. Looking at Case A, we see FG
departures of -7K (see also Tab. 1), which have been generated from a run of the full nonlinear model at T511.
Then, an inner-loop is run using the tangent-linear (TL) andadjoint models at T95. After a preset 70 iterations,
the departure has been reduced to -1 K. This departured′

1 has been computed using the incremental approach,
i.e. it is based on the TL model and observation operatorsM andH:

d′
1 = yo−H[M[xb(t0)]]−HMδx1. (8)

For notational simplicity we have dropped the timestep indicator i from the modelM. We are thinking about
just a single observationyo, i.e. this is a scalar here, as is the nonlinear observation operatorH. δx1 is the
increment generated by the first inner loop.

A second full-resolution nonlinear trajectory (outer-loop) now runs to compute the cost function with this
increment. The corresponding nonlinear departured1 is:

d1 = yo−H[M[xb(t0)+ δx1]] (9)

Figure 8a shows that this is -6 K. This suggests that the TL assumption (Eq. 3) is invalid, although the resolution
mismatch between outer loop and inner loop (T511 vs. T95) is very large and likely also causes problems. In
geophysical terms, the incrementδx1 is able to reduce TCWV, cloud and rain at the observation point when fed
through the T95 TL model, but it is largely ineffective in theT511 nonlinear model. However the incremental
approach exists in order to deal with such non-linearities.

A second inner loop is run, which reduces the departure to -2 K. This is based on a new increment,δx2:

d′
2 = yo−H[M[xb(t0)+ δx1]]−HMδx2. (10)

This time the nonlinear departure,

d2 = yo−H[M[xb(t0)+ δx1 + δx2]], (11)

is much smaller, also approximately -2 K. This shows that thenonlinearity has lessened. It is also likely that
the increase in resolution of the TL model to T159 has helped.The final inner loop is run at T255 and manages
to reduce the departure a little further, to -1 K, and the trueanalysis departure, computed using a final run of
the nonlinear model, is relatively close, at -1.5 K. Hence, this example shows the incremental 4D-Var approach
can deal quite successfully with the nonlinearities inherent in a convective situation.

Case B (Fig. 8b; Tab. 2) illustrated a midlatitude frontal situation. This appears to suffer far less from nonlin-
earity or resolution effects, with the linear and nonlineardepartures being relatively close. Most of the work
appears to be done in the first minimisation. We would not expect the departure to go to zero, as the assimilation
will strike a balance between the background and observational information. Again, incremental 4D-Var seems
to work well.

Case C has been chosen to illustrate a more problematic situation. This is a convective case with heavy rain
and cloud in the FG (4.2 and 4.0 kg m−2 respectively). The observation disagrees, and a FG departure of
-18 K shows that rain and cloud amounts should be much lower. The first inner loop is able to reduce this
departure, but when these increments are fed into the nonlinear model, convection is switched off and cloud
and precipitation nearly disappear (not shown). The new departure is +32 K. Further inner loop minimisations
are unable to reverse this, and the analysis departure is as large as the FG departure, but with opposite sign.

However, in the normal All-Sky system, we place greater restrictions on the use of rainy and cloudy obser-
vations. In practice, Case C would have been rejected by QC (Sec 4.3) because the FG departures are much

20 Technical Memorandum No. 618



Direct 4D-Var assimilation of all-sky radiances. Part I: Implementation

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Standard deviation ratio

0.0

0.5

1.0

1.5

2.0

2.5

3.0

S
ta

nd
ar

d 
de

vi
at

io
n 

ra
tio

0.10 0.20 0.30
0.40

0.50
0.60

0.70
0.80

0.90
0.95

0.99

Correlation

SSMI-TB AMSRE-TB HIRS-TB AMSUA-TB AMSUB-TB
MHS-TB AIRS-TB IASI-TB QSCAT-uv SATOB-uv
TEMP-T TEMP-q TEMP-uv SYNOP-Ps AIREP-T
NEXRAD-RR

Figure 9: Taylor diagram showing statistics of inner loop departuresd′1 versus outer loop departuresd1 in observation
space from a single 12-hour 4D-Var assimilation cycle at 0000 UTC 1 April 2009. Each observation type and measured
variable is shown with a different symbol, as described in the legend. Correlation is measured in azimuth while standard
deviation ratio is shown in the radial direction. The perfect match would be found at the point for which correlation and
standard deviation ratio are both equal to 1. The further away from this point, the worse the agreement betweend′1 and
d1 and the less valid is the tangent linear assumption.

larger than would be expected given the observation error. If such an observation did get through BgQC, VarQC
would act to downweight its influence in the analysis due to the continuing large departures.

These test cases suggest that incremental 4D-Var usually works well at dealing with nonlinearity and that in
situations where it might not, observations will be rejected by quality control.

6 Convergence and performance in full system

6.1 Nonlinearity in observation space

We can also investigate nonlinearity in the context of the full observing system. Here we look at a single
12-hour 4D-Var assimilation cycle at 0000 UTC 1 April 2009 using the ECMWF operational configuration.
For illustrative purposes we have also included some experimental, passively monitored surface rain radar
observations.

Figure 9 displays a Taylor diagram comparing the inner loop departuresd′
1 (Eq. 8, vectorized) with the corre-

sponding outer loop departuresd1 (Eq. 9) after the first minimisation for the main observationtypes assimilated
in the ECMWF 4D-Var. Essentially, this comparison represents a test of the tangent linear hypothesis, including
the use of a lower resolution in the linearised model. Each symbol represents a given observation type and its
location on the diagram gives both the correlation (in azimuth) and the standard deviation ratio (radial distance;
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Table 3: Acronyms of satellite observation types in Figs. 9 and 10
Acronym Description
HIRS High Resolution Infrared Radiation Sounder
AMSU-A Advanced Microwave Sounding Unit A
AMSU-B Advanced Microwave Sounding Unit B
MHS Microwave Humidity Sounder
AIRS Advanced Infrared Sounder
IASI Infrared Atmospheric Sounding Interferometer
QuikSCAT Quick Scatterometer

SDR hereafter). Ideally, a perfect match would be obtained for a correlation and an SDR value both equal
to 1 (inner loop departures,d′

1, being chosen as the reference here). It should also be notedthat in Fig. 9 all
assimilated channels of a given instrument have been combined in the statistics. Observation types consist of
polar orbiting satellite measurements (SSM/I, AMSR-E, HIRS, AMSU-A, AMSU-B, MHS, AIRS, IASI TBs,
QuikSCAT wind - see Table 3 for acronyms not yet defined), geostationary satellite wind vectors (SATOB-uv),
radiosonde temperature, specific humidity and wind measurements (TEMP-T, TEMP-q and TEMP-uv), surface
pressure data (SYNOP-Ps) and aircraft temperature reports(AIREP-T).

Figure 9 clearly demonstrates that all observation types that are not directly affected by clouds and precipitation
exhibit an SDR between 1.05 and 1.45 and a correlation coefficient ranging between 0.7 and 0.93, which
is far from perfect but still reasonable. For most observation types, the correlation is around 0.8, while the
highest values are obtained for AMSU-A TBs (mainly sensitive to temperature) and temperature and wind
radio-soundings (TEMP-T and TEMP-uv). On the other hand, for SSM/I and AMSR-E TBs, which are often
strongly affected by clouds and precipitation, the correlation coefficient drops to about 0.46 and SDR increases
to 1.7, some distance away from all other observation types.As further evidence of the degradation of the
validity of the linear assumption for precipitation observations, the statistics for hourly rain rate observations
from the network of ground-based precipitation radars overthe U.S.A. (NEXRAD-RR) are also plotted in
Fig. 9. For these observations, the match between increments from minimisation and trajectory becomes even
worse since correlation drops to 0.35 while SDR reaches 3.25.

As a general remark, Fig. 9 shows that for all observation types, SDR values are always larger than 1, which
points towards a systematic underestimation of increment sizes in the linear computations of the minimisation
or a systematic (spurious) amplification in the nonlinear calculations of the trajectory. It is also found that
the linearity assumption in observation space becomes lessvalid for most observation types away from the
beginning of the assimilation window (not shown).

The Taylor diagram for the third (and final) minimisation is displayed in Fig. 10. It shows that statistics are im-
proved compared to the first minimisation as a result of the reduced resolution gap between third minimisation
and trajectory, and also because of the usually smaller magnitude of increments/departures.

An additional Taylor diagram is plotted for individual channels of SSM/I and AMSR-E in Fig. 11. The highest
correlations and SDR values closest to unity are obtained for channels 22v of SSM/I and 24v and 24h of AMSR-
E, which are mainly sensitive to moisture. The worst match (correlation below 0.4; SDR higher than 2.25) is
found for the 37v channels of SSM/I and AMSR-E, which are highly sensitive to clouds and precipitation and
therefore more subject to nonlinearities. Channels 19v and19h lie in-between those two extremes as a result of
their mixed sensitivities to moisture and hydrometeors.

This statistical comparison therefore confirms that for observations affected by clouds or (worse) precipitation,
increments produced in the minimisations are quite often not translated into consistent increments in the fol-
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Figure 10: As for Fig. 9 but for the third and final minimisation.
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Figure 11: As for Fig. 9 but for individual AMSR-E and SSM/I channels.
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Table 4: Number of iterations in each inner loop minimisation (mean for September 2007).
Outer loop Control All-Sky Difference significant at [%]

1st 70.0 70.0 (fixed)
2nd 28.8 28.5 94
3rd 32.1 31.6 92

lowing high-resolution nonlinear trajectory. However, this problem becomes much smaller as the outer loop
progresses, showing the incremental formulation appears to work reasonably well in reducing non-linearity. We
would conclude that while the all-sky microwave imager observations are more non-linear than typical clear
sky observations, they are sufficiently linear that it is valid to assimilate them operationally.

It is interesting to contrast this with the results of Marécal and Mahfouf (2003) who performed single-observation
tests with rainfall observations in incremental 4D-Var. They observed big jumps in the value of the cost function
between inner and outer loops (the departures, of course, make up part of the cost function - see Eq. 1) which
they also ascribed to the inherent non-linearity of the situation. They concluded that direct 4D-Var of rainfall
observations would be very tricky. However, the results of Geeret al. (2010b) show that direct 4D-Var appears
to be working well. This is likely for the following reasons:

• All-sky microwave imager observations are not ‘pure’ rain observations - they are also sensitive to more
linear quantities like TCWV and cloud;

• We have the benefit of moist physics parameterizations that have been carefully linearised (Tompkins
and Janisková, 2004; Lopez and Moreau, 2005), specificallyto avoid the kind of problems encountered
by Marécal and Mahfouf;

• The analysis includes the full observing system, which means that the large scale wind and temperature
fields are strongly constrained. This helps guide incremental 4D-Var towards the right solution, and
means that in later inner loops, the size of the necessary incrementsδx is relatively small, i.e. the tangent
linear approximation will become increasingly valid.

• A very cautious quality control eliminates contentious observations (see Sec. 4.3).

6.2 Minimisation quality

We can also examine whether the nonlinearity inherent in all-sky observations affects general measures of
minimisation quality. The number of iterations needed in each inner-loop is shown in Tab. 4. The number is
fixed to 70 in the first inner-loop but flexible in the second andthird; these minimisations stop when convergence
criteria have been satisfied. Here we use the Control and All-Sky experiments described by Geeret al.(2010b),
which were run for a period of several months. The effect of going from Control to All-Sky is very small and,
surprisingly, the number of iterations is reduced to a statistically significant degree. Practically, we would say
that 4D-Var is working just as well as before.

Another thing to examine is the condition number, which is the ratio of the largest to the smallest eigenvalue
of the Hessian of the cost function. This is a measure of the ill-conditioning of the inversion problem that is
solved in the analysis. As shown in Fig. 12 it is in general little affected by the move to all-sky assimilation.
There are isolated cases in the 2nd and 3rd trajectories where for one or two cycles the condition number
is much higher than normal. However, these are just as likelyto be found in the Control as in the All-Sky
experiment, and they are probably associated with a particular synoptic situation on these days making it hard
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Figure 12: Condition number of each minimisation, against day. Thick line is Control; Thin line is All-Sky.

Table 5: Computer billing units for variational assimilation (mean for September 2007).
First trajectory Inner loops Other trajectories

All-Sky 352 4002 1157
Control 661 3496 1208

No microwave imagers 327 3460 1101

for the minimisation to converge. All-Sky shows one particularly large peak in the 3rd minimisation, on 19th
September. However, in our experience this can sometimes also happen in Control-type experiments, so we do
not believe it is significant.

6.3 Numerical performance

The all-sky 4D-Var approach needed to be computationally efficient to be included as part of the ECMWF
operational assimilation system. Table 5 shows the mean computational cost of variational assimilation for
the All-Sky and Control experiments and for an experiment with all microwave imager assimilation switched
off. Compared to this, the first trajectory of Control is muchslower, since this is where the 1D-Var retrievals
were run. However, 1D+4D-Var required little extra computation elsewhere, and direct assimilation of clear
radiances was comparatively fast. In contrast, most of the cost of the All-Sky approach is in the inner loop
minimisations. This is due to the use of scattering radiative transfer in the observation operator, and by the need
to use a message-passing approach to move observations between processors. Overall, All-Sky is only a little
more expensive than Control. Microwave imager assimilation in All-Sky has a cost equal to 13% of that of the
no-imager reference, compared to 10% for Control.

Many actions were taken to make the cost of All-Sky comparable to that of Control, with the most significant
being:

• A decision not to actively assimilate TMI and SSMIS observations. This was justified in part by the
additional difficulties involved in using these particularinstruments (Geeret al., 2010a; Bellet al., 2008).

• In the minimisations, TL and adjoint radiative transfer calculations are turned off for channels where the
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observation error is greater than 50 K. Tangent-linear or adjoint gradients are set to zero in this case.

• General code optimisation, such as improving the ordering of memory access.

Another action was to turn off scattering radiative transfer in ‘clear sky’ situations. However, because the
moist physics parametrisations almost always produce a small background level of cloud or rain, very few first
guesses are truly ‘clear sky’ and this approach saved littletime overall. We hope to revisit this in the future,
since there are a significant proportion of atmospheric situations where full scattering radiative transfer should
not be necessary, particularly at lower microwave frequencies.

7 Conclusion

A new system has been developed at ECMWF to assimilate radiances from passive microwave imaging ra-
diometers such as SSM/I, AMSR-E and TMI. For the first time, itexploits the sensitivity of these radiances to
temperature, water vapour, sea-surface wind, clouds and precipitation in all sky conditions. This is achieved
through the use of a multiple-scattering radiative transfer model and the full set of moist physics parameter-
izations at all stages of the 4D-Var assimilation, i.e. wherever the cost function or its gradient is required.
The unified treatment of radiances in clear-sky and cloud-affected regions permits a much improved balance of
observational data usage in the analysis because it allows the active generation, dissipation and modification of
clouds and clear sky conditions in consistency with the NWP model and the observations. It also overcomes
the lopsided data usage towards clear-sky areas that is applied to most other satellite data types.

This paper presents the technical implementation of the system and a performance analysis focusing on the
main issues related to radiance assimilation in clouds and precipitation: observation operator accuracy, obser-
vation error definition and bias correction, basic observational impact, 4D-Var linearity and stability as well as
computational cost. The companion paper (Geeret al., 2010b) addresses the impact of the new system in the
full operational assimilation and prediction context.

Compared to a clear-sky data assimilation system roughly twice the number of observations are used. How-
ever, due to the difficulty of dealing with frozen precipitation at higher frequencies, only channels at 19 and
22/24 GHz are actively assimilated in cloud-affected areas. The new system dynamically adjusts observation
operator errors as a function of the mass of hydrometeors in the atmospheric column and the distance between
observation and model grid point location. Along with the use of VarQC, this gives a dynamic weighting of the
observational impact as a function of atmospheric state. Tighter quality control and larger observation errors
reduce the weight of microwave imager data in the assimilation compared to the previous system. However,
the new approach is more balanced in terms of observation sampling.

Single-observation experiments demonstrate the mechanisms of the all-sky approach. Examples are shown
both with and without the error inflation as a function of distance from the grid point. With error inflation, the
observations have a weaker impact in the all-sky approach than in the previous 1D+4D-Var assimilation for
cloudy and rainy areas. However, without error inflation, i.e. with identical observation errors used in each
test, the all-sky analysis is closer to the observations than was possible with 1D+4D-Var. Even with a single
observation significant wind increments can be produced in response to a disagreement between first-guess
and observed moisture and cloud. Direct 4D-Var of rain and cloud affected observations allows a physically
consistent adjustment of model dynamics with temperature and humidity increments, due to the sensitivity of
the atmospheric state to radiance observations through thecombined radiative transfer model and the moist
physics parameterization.

The concern that minimisation performance would be poor when strongly non-linear models were employed ap-
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pears unfounded. The incremental approach efficiently allows re-linearisation by running non-linear model up-
dates between lower resolution minimisations. The single-observation tests demonstrated that the re-linearisation
enables the minimisation to converge in most cases. Qualitycontrol is able to pick up situations where non-
linearity remains an issue. The degree of non-linearity of the full 4D-Var operator has been calculated for
all active observation types in the ECMWF assimilation system. While linearity of the operator for all-sky
radiances is clearly inferior compared to other clear-sky satellite and also conventional observations, this dis-
crepancy reduces between successive inner-loop minimisations. This is helped by the increase in spatial model
resolution with each inner-loop and by the adjustment of large-scale dynamical structures in previous minimi-
sations. The overall performance of the 4D-Var analysis remains unchanged, as indicated by the condition
number and the number of iterations.

The new approach has a computational cost that is only a 3% higher than the previous system. This was
achieved through the elimination of unnecessary observation operator calls, by reducing the number of satellites
assimilated, and by computer code optimisation and parallelisation. The system has been run actively in the
ECMWF forecasting system since March 2009.
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