

Koninklijk Nederlands Meteorologisch Instituut Ministerie van Verkeer en Waterstaat

Beyond the seasonal time scale...

Wilco Hazeleger

Geert Jan van Oldenborgh, Bert Wouters, Camiel Severijns, Torben Koenigk (SMHI), Paco Doblas Reyes (IC3), Simona Stefanescu (ECMWF) and many others

Moscow, 17 June

Moscow, 7 August

2-meter temperature anomaly in July

E-OBS tg Anomaly 07-2010 w.r.t. 1971-2000

Longitude

Verification of seasonal prediction T2m

ROC score - hit rate vs false alarm rate using a set of increasing probability thresholds. The area under the ROC curve is plotted (1 perfect, 0.5 no skill)

Scenarios for Climate Services (climate adaptation, KNMI06)

Modelling climate changes: uncertainties

Hawkins and Sutton, 2009

Predicting natural variability: more than noise?

• O-hypothesis: ocean integrates white noise (weather) (Hasselmann 1976)

$$\frac{dX(t)}{dt} = -\alpha X(t) + \zeta(t)$$

With a damping coefficent and $\zeta(t)$ random variable (AR1 process \rightarrow red noise)

 When variability stands out of red noise, e.g. oscillations due to internal dynamics, dynamical predictions may be possible

Spectra of global mean temperature: peaks?

Fig. 2. Input and response of stochastically forced (single component) climate model with linear feedback; (a) covariances, (b) spectra. In the ranges $\tau_x \ll \tau \ll \tau_y$ and $\tau_y^{-1} \ll \ll \tau_x^{-1}$ the models with and without feedback are identical. In the range $\omega \lesssim \tau_y^{-1}$ the spectrum $F(\omega)$ cannot be regarded as part of the "weather input", but is coupled to the climate response.

Perhaps ...patterns of variability: e.g. Atlantic Multidecadal Oscillation

Knight et al. 2005

Perhaps ... spectra from reconstructions of climate

 Reconstructed principal component from eigenvector describing long term variations in dominant multidecadal
 SST variability in the North Atlantic (Mann et al 1998; nb heavily disputed)

T159L62, 1 deg Ocean, based on Seasonal Forecast System 3 of ECMWF Consortium of 20 institutes from 10 European Countries (Hazeleger et al, BAMS 2010)

Validation of EC-Earth

RMS monthly mean seal level pressure in 20cm3 runs wrt ADVICE data

Hazeleger et al, BAMS, 2010

Systematic error

Simulated low frequency variability: AMOC in preindustrial run EC-Earth

Similar variability in other models

Atlantic MOC- North Atlantic SST (AMO) relation

corelation AMO - MOC (10 yr)

Fresh water changes drive AMOC variability

correlation p_{subpolar,0-2000,S} - MOC (10 yr)

Nb time scales and mechanisms are very model dependent! Here it comes from the North....

EC-Earth, correlation between air temperature and AMOC (lag 2 years). Other correlations: rainfall over Sahel, possibly hurricanes

Remarks

Seasonal predictions over the European region are not very skillful; perspective for longer time scales seem to be slim

But...

- Any information on climate *variability* can be helpful for sectors vulnerable to climate *change*
- Gridpoint verification gives a negative picture
- Decadal patterns of variability are observed associated with ocean variability
- Models reproduce some of that variability, but suffer from large systematic error and differ between each other

It is a scientific challenge!

What to expect from decadal predictions?

 Diagnostic potential predictability: ratio of variances in a long control simulation

$$DPP = \frac{\sigma_v^2 - \frac{1}{m}\sigma^2}{\sigma^2}$$

With σ_v^2 variance of m-year means

(e.g. Boer et al, Pohlmann et al)

Diagnostic potential predictability in EC-Earth

10 yr

What to expect?

Collins et al 2006

What to expect from decadal predictions?

• Prognostic potential predictability: ensemble spread in relation to total variance

$$PPP = 1 - \frac{\frac{1}{N(M-1)} \sum_{j=1}^{N} \sum_{i=1}^{M} [X_{ij}(t) - \overline{X_{j}}(t)]^{2}}{\sigma^{2}}$$

With X_{ij} is the ith member of jth ensemble, N is number ensembles, M number of ensemble members

Griffies and Bryan 1997, Collins et al, Pohlmann et al

Prognostic Potential predictability in EC-Earth (T2m, yr 1-10)

T. Koenigk, SMHI, pers. comm.

Prognostic potential predictability in EC-Earth (T2m, yr 1-10; without trend)

T. Koenigk, SMHI, pers. comm.

Prognostic potential predictability EC-earth (SLP, yr 1-10)

T. Koenigk, SMHI, pers. comm.

Remarks

Potential predictability associated with patterns of variability in the North Atlantic

The trend is predictable!

Most models show variability associated with MOC variability, but mechanisms differ

 \rightarrow Let's try to make predictions!

Prototype 'Real' decadal predictions

Initialize atmosphere-ocean-sea ice-land models from observed/analyzed ocean and sea ice state

Perturb initialized models to generate ensembles

Verify the results against own analyses and independent observations

CMIP5 (contribution to IPCC AR5) decadal prediction experiments

Published decadal predictions, e.g.:

Initialization, in particular the ocean: Limited subsurface ocean observations

Initialisation ocean: ocean analyses

Global Ocean Heat Content 0-700m (10^{22} J)

A. Koehl, pers. comm.

Ocean Initialization: methods

- Initialization with estimate of climate state
 - Drift
 - No spinup needed
 - Systematic error
- Initialization with estimate of anomaly of climate state on top of model's mean state (stay on attractor)
 - Need spinup to get mean state model
 - Choice for nudging (how strong, long, which variables?)
 - Still drift....systematic error (apply flux correction?)

Perturbing the ensemble

- Perturbations which grow most rapidly in slow component (e.g. in ocean, for instance Kleeman et al. for ENSO, Hawkins and Sutton for 3D ocean, bred vectors B. Kirtman etc.)
- Consistent with the observational uncertainties
- Can be useful for identifying regions where additional observations would be most valuable to improve predictions

Perturbing ocean

 E.g. linear Inverse Modelling (Penland & Sardeshmukh 1995, Hawkins & Sutton 2009)

$$\frac{dx}{dt} = Bx + \zeta$$

x represents leading EOFs

$$x(t+\tau) = P_{\tau}x(t)$$

$$P^T P x_0 = \lambda x_0$$

Eigenvectors are optimal growing perturbations

In practice, pragmatic approaches (perturbing atmosphere, different ocean states, perturbing ocean diffusivity)

Hawkins & Sutton 2009

The real thing: CMIP5 decadal predictions in EC-Earth

Global mean SST (no drift correction)

Wouters et al, in prep

CMIP5 decadal predictions in EC-Earth, drift corrected

Global mean SST (with drift correction)

Wouters et al, in prep

Verification of decadal forecast

- Against simplest statistical model (AR1, damped persistence, or climatology)
- Correlation coefficient of the ensemble mean has the best signal/noise ratio we only have 9 or 10 data points
 → probabilistic scores are nearly impossible
 → avoids the (constant) bias correction

 $X(t + \tau) = A(\tau)X(t)$ $A(\tau) = 0 \quad \text{(climatology)}$ $A(\tau) = 1 \quad \text{(persistence)}$

Verification: deal with model uncertainty

Hawkins and Sutton, 2009

Verification multi-model EU-ENSEMBLES decadal predictions

van Oldenborgh, Doblas-Reyes, Wouters and Hazeleger, subm

Verification multi-model decadal predictions

van Oldenborgh, Doblas-Reyes, Wouters and Hazeleger, subm

Verification of skill in multi-model ENSEMBLES data

Total skill: years 2–5

Skill w/o trend: years 2-5

Persistence: obs lag 5yr

0.2

-0.2

-0.8

-0.6

-0.4

-1

0.4

0.6

0.8 1

Verification multi-model decadal predictions

2 meter temperature multi-model anomaly correlation 2-5 year lead time averaged, without trend.

Verification multi-model EU-ENSMEBLES decadal predicition: 6-10 yr mean precipitation

AMO multimodel predictability

Final remarks

Decadal predictions are still at its infancy:

- Systematic model error is large & sparse observations
- There are indications for skill in predictions in the North Atlantic. Impact on land is limited, but there is scope (e.g. Sahel, perhaps Europe given impact of MOC in models).
- Trend is predictable (climate change)! Scientifically, from a predictability point of view, of less interest, but of practical use.
- Skill on natural variability is the icing on the cake (it is small and the amplitude is small)
- CMIP5 ensemble opportunity of studying different methodologies

Final remarks

Most advances needed for oceanic part of the problem

- Models: low resolution limits realistic ocean circulation characteristics (overflows, western boundary currents, upwelling zones)
- Observing system: look for places that need to be observed well (seems to be deep ocean, sea ice)
- Initialization: trial and error with full and anomaly initialization. Systematic assessment needed.
- Perturbation: how to perturb the slow component, in particular deep ocean, sea ice?
- Verification: simple methods are useful (rmse, correlations). In addition we can learn from 'windows of opportunity' (e.g. mid 90s warming in the Atlantic)

CLIVAR Earth System Initialisation for Decadal Predictions

http://www.knmi.nl/samenw/easyinit/

Thank You

Why is impact of AMOC on Europe relatively small?

Temperature response in a coupled GCM in response to a (forced) collapse of the AMOC

Anomalous net surface fluxes

Atmosphere 'warms' the ocean to compensate for reduction in oceanic heat transport divergence

Divergence of moist static energy (MSE= c_pT+L_q+gz) over ocean strongly decreases \rightarrow less transport of MSE from ocean to continent

Anomalous radiative fluxes at the suface \rightarrow cloud response

Andere ontwikkelingen: initialiseren bodemvocht

Verandering in skill van extremen van temperatuur wanneer bodemvocht geinitialiseerd wordt (GLACE-2, vd Hurk pers. comm.)